Joint Tensor-Train Parameterization for Efficient and Expressive Low-Rank Adaptation
- URL: http://arxiv.org/abs/2506.16456v1
- Date: Thu, 19 Jun 2025 16:46:23 GMT
- Title: Joint Tensor-Train Parameterization for Efficient and Expressive Low-Rank Adaptation
- Authors: Jun Qi, Chen-Yu Liu, Sabato Marco Siniscalchi, Chao-Han Huck Yang, Min-Hsiu Hsieh,
- Abstract summary: Low-Rank Adaptation (LoRA) is widely recognized for its parameter-efficient fine-tuning of large-scale neural models.<n>This paper proposes a novel tensor-train-guided adaptation framework to overcome these limitations.<n>We show thatGuide-based LoRA consistently outperforms standard LoRA and TT-LoRA, achieving improved accuracy and scalability with fewer parameters.
- Score: 33.3214207118996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-Rank Adaptation (LoRA) is widely recognized for its parameter-efficient fine-tuning of large-scale neural models. However, standard LoRA independently optimizes low-rank matrices, which inherently limits its expressivity and generalization capabilities. While classical tensor-train (TT) decomposition can be separately employed on individual LoRA matrices, this work demonstrates that the classical TT-based approach neither significantly improves parameter efficiency nor achieves substantial performance gains. This paper proposes TensorGuide, a novel tensor-train-guided adaptation framework to overcome these limitations. TensorGuide generates two correlated low-rank LoRA matrices through a unified TT structure driven by controlled Gaussian noise. The resulting joint TT representation inherently provides structured, low-rank adaptations, significantly enhancing expressivity, generalization, and parameter efficiency without increasing the number of trainable parameters. Theoretically, we justify these improvements through neural tangent kernel analyses, demonstrating superior optimization dynamics and enhanced generalization. Extensive experiments on quantum dot classification and GPT-2 fine-tuning benchmarks demonstrate that TensorGuide-based LoRA consistently outperforms standard LoRA and TT-LoRA, achieving improved accuracy and scalability with fewer parameters.
Related papers
- DenseLoRA: Dense Low-Rank Adaptation of Large Language Models [14.133511131962786]
Low-rank adaptation (LoRA) has been developed as an efficient approach for adapting large language models (LLMs)<n>We introduce Dense Low-Rank Adaptation (DenseLoRA), a novel approach that enhances parameter efficiency while achieving superior performance compared to LoRA.<n>We evaluate DenseLoRA on various benchmarks, showing that it achieves 83.8% accuracy with only 0.01% of trainable parameters, compared to LoRA's 80.8% accuracy with 0.70% of trainable parameters on LLaMA3-8B.
arXiv Detail & Related papers (2025-05-27T08:19:07Z) - TLoRA: Tri-Matrix Low-Rank Adaptation of Large Language Models [0.135975510645475]
TLoRA is a novel tri-matrix low-rank adaptation method.<n>We show that TLoRA achieves comparable performance to existing low-rank methods.
arXiv Detail & Related papers (2025-04-25T23:11:10Z) - Norm-Bounded Low-Rank Adaptation [10.22454500514559]
We propose norm-bounded low-rank adaptation (NB-LoRA) for parameter-efficient fine tuning.<n> NB-LoRA is a novel parameterization of low-rank weight adaptations that admits explicit bounds on each singular value of the adaptation matrix.
arXiv Detail & Related papers (2025-01-31T11:24:57Z) - GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
Fine-tuning large language models (LLMs) is computationally intensive because it requires updating all parameters.<n>Low-Rank Adaptation (LoRA) improves efficiency by modifying only a subset of weights but introduces a trade-off between expressivity and computational cost.<n>We propose Geometric Low-Rank Adaptation (GeLoRA), a novel framework that computes the intrinsic dimensionality of hidden state representations to adaptively select LoRA ranks.
arXiv Detail & Related papers (2024-12-12T13:04:54Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
arXiv Detail & Related papers (2024-05-31T17:43:35Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z) - Spectral Tensor Train Parameterization of Deep Learning Layers [136.4761580842396]
We study low-rank parameterizations of weight matrices with embedded spectral properties in the Deep Learning context.
We show the effects of neural network compression in the classification setting and both compression and improved stability training in the generative adversarial training setting.
arXiv Detail & Related papers (2021-03-07T00:15:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.