BIDA: A Bi-level Interaction Decision-making Algorithm for Autonomous Vehicles in Dynamic Traffic Scenarios
- URL: http://arxiv.org/abs/2506.16546v1
- Date: Thu, 19 Jun 2025 19:03:40 GMT
- Title: BIDA: A Bi-level Interaction Decision-making Algorithm for Autonomous Vehicles in Dynamic Traffic Scenarios
- Authors: Liyang Yu, Tianyi Wang, Junfeng Jiao, Fengwu Shan, Hongqing Chu, Bingzhao Gao,
- Abstract summary: We design a bi-level interaction decision-making algorithm (BIDA) that integrates interactive Monte Carlo tree search (MCTS) with deep reinforcement learning (DRL)<n>Specifically, we adopt three types of DRL algorithms to construct a reliable value network and policy network, which guide the online deduction process of interactive MCTS.<n> Experimental evaluations demonstrate that our BIDA not only enhances interactive deduction and reduces computational costs, but also outperforms other latest benchmarks.
- Score: 5.193590097161461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In complex real-world traffic environments, autonomous vehicles (AVs) need to interact with other traffic participants while making real-time and safety-critical decisions accordingly. The unpredictability of human behaviors poses significant challenges, particularly in dynamic scenarios, such as multi-lane highways and unsignalized T-intersections. To address this gap, we design a bi-level interaction decision-making algorithm (BIDA) that integrates interactive Monte Carlo tree search (MCTS) with deep reinforcement learning (DRL), aiming to enhance interaction rationality, efficiency and safety of AVs in dynamic key traffic scenarios. Specifically, we adopt three types of DRL algorithms to construct a reliable value network and policy network, which guide the online deduction process of interactive MCTS by assisting in value update and node selection. Then, a dynamic trajectory planner and a trajectory tracking controller are designed and implemented in CARLA to ensure smooth execution of planned maneuvers. Experimental evaluations demonstrate that our BIDA not only enhances interactive deduction and reduces computational costs, but also outperforms other latest benchmarks, which exhibits superior safety, efficiency and interaction rationality under varying traffic conditions.
Related papers
- SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving [51.47621083057114]
SOLVE is an innovative framework that synergizes Vision-Language Models with end-to-end (E2E) models to enhance autonomous vehicle planning.<n>Our approach emphasizes knowledge sharing at the feature level through a shared visual encoder, enabling comprehensive interaction between VLM and E2E components.
arXiv Detail & Related papers (2025-05-22T15:44:30Z) - AI2-Active Safety: AI-enabled Interaction-aware Active Safety Analysis with Vehicle Dynamics [8.557684007368046]
This paper introduces an AI-enabled, interaction-aware active safety analysis framework.<n>The framework employs a bicycle model-augmented with road gradient considerations to accurately capture vehicle dynamics.<n>In parallel, a hypergraph-based AI model is developed to predict probabilistic trajectories of ambient traffic.
arXiv Detail & Related papers (2025-05-01T05:46:34Z) - DriveTransformer: Unified Transformer for Scalable End-to-End Autonomous Driving [62.62464518137153]
DriveTransformer is a simplified E2E-AD framework for the ease of scaling up.<n>It is composed of three unified operations: task self-attention, sensor cross-attention, temporal cross-attention.<n>It achieves state-of-the-art performance in both simulated closed-loop benchmark Bench2Drive and real world open-loop benchmark nuScenes with high FPS.
arXiv Detail & Related papers (2025-03-07T11:41:18Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
We propose a CAV decision-making architecture based on transformer and reinforcement learning algorithms.
A learnable policy token is used as the learning medium of the multi-vehicle joint policy.
Our model can make good use of all the state information of vehicles in traffic scenario.
arXiv Detail & Related papers (2024-09-23T15:16:35Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
Reinforcement learning algorithms have emerged as a promising approach to address these challenges.
Here, we address the problem of efficiently and safely navigating T-intersections using a lower-cost, single-agent approach.
Our results reveal that the proposed approach enables the AV to effectively navigate T-intersections, outperforming previous methods in terms of travel delays, collision minimization, and overall cost.
arXiv Detail & Related papers (2023-09-30T10:54:02Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
This paper presents a novel framework for interaction-aware motion planning in dense traffic scenarios.
We propose to learn, via deep Reinforcement Learning (RL), an interaction-aware policy providing global guidance about the cooperativeness of other vehicles.
The learned policy can reason and guide the local optimization-based planner with interactive behavior to pro-actively merge in dense traffic while remaining safe in case the other vehicles do not yield.
arXiv Detail & Related papers (2021-07-09T16:43:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.