Measuring (a Sufficient) World Model in LLMs: A Variance Decomposition Framework
- URL: http://arxiv.org/abs/2506.16584v1
- Date: Thu, 19 Jun 2025 20:19:18 GMT
- Title: Measuring (a Sufficient) World Model in LLMs: A Variance Decomposition Framework
- Authors: Nadav Kunievsky, James A. Evans,
- Abstract summary: We propose a formal framework for evaluating whether large language models (LLMs) possess a world model.<n>We introduce a new evaluation approach to measure model response variability into three components: variability due to user purpose, user articulation, and model instability.<n>Our results show how larger models attribute a greater share of output variability to changes in user purpose, indicating a more robust world model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding whether large language models (LLMs) possess a world model-a structured understanding of the world that supports generalization beyond surface-level patterns-is central to assessing their reliability, especially in high-stakes applications. We propose a formal framework for evaluating whether an LLM exhibits a sufficiently robust world model, defined as producing consistent outputs across semantically equivalent prompts while distinguishing between prompts that express different intents. We introduce a new evaluation approach to measure this that decomposes model response variability into three components: variability due to user purpose, user articulation, and model instability. An LLM with a strong world model should attribute most of the variability in its responses to changes in foundational purpose rather than superficial changes in articulation. This approach allows us to quantify how much of a model's behavior is semantically grounded rather than driven by model instability or alternative wording. We apply this framework to evaluate LLMs across diverse domains. Our results show how larger models attribute a greater share of output variability to changes in user purpose, indicating a more robust world model. This improvement is not uniform, however: larger models do not consistently outperform smaller ones across all domains, and their advantage in robustness is often modest. These findings highlight the importance of moving beyond accuracy-based benchmarks toward semantic diagnostics that more directly assess the structure and stability of a model's internal understanding of the world.
Related papers
- Revisiting Multi-Agent World Modeling from a Diffusion-Inspired Perspective [45.44355861030715]
We develop a flexible and robust world model for Multi-Agent Reinforcement Learning (MARL) using diffusion models.<n>Our method, Diffusion-Inspired Multi-Agent world model (DIMA), achieves state-of-the-art performance across multiple multi-agent control benchmarks.
arXiv Detail & Related papers (2025-05-27T09:11:38Z) - Prismatic Synthesis: Gradient-based Data Diversification Boosts Generalization in LLM Reasoning [77.120955854093]
We show that data diversity can be a strong predictor of generalization in language models.<n>We introduce G-Vendi, a metric that quantifies diversity via the entropy of model-induced gradients.<n>We present Prismatic Synthesis, a framework for generating diverse synthetic data.
arXiv Detail & Related papers (2025-05-26T16:05:10Z) - Relative Overfitting and Accept-Reject Framework [5.465098504510676]
We propose an ensemble framework that governs how models are segmented to ensure performance improvement.<n>We detail the patterns of this framework within the domain of NLP and briefly describe its to other fields, such as computer vision (CV) and AI for science.
arXiv Detail & Related papers (2025-05-12T17:36:14Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications.<n>One core challenge of evaluation in the large language model (LLM) era is the generalization issue.<n>We propose Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores.
arXiv Detail & Related papers (2025-04-10T04:09:47Z) - Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions [8.069858557211132]
Large Language Models (LLMs) have shown remarkable capabilities across various tasks.<n>Their deployment in high-stake domains requires consistent and coherent behavior across multiple rounds of user interaction.<n>This paper introduces a comprehensive framework for evaluating and improving LLM response consistency.
arXiv Detail & Related papers (2025-03-28T11:49:56Z) - FACT-AUDIT: An Adaptive Multi-Agent Framework for Dynamic Fact-Checking Evaluation of Large Language Models [79.41859481668618]
Large Language Models (LLMs) have significantly advanced the fact-checking studies.<n>Existing automated fact-checking evaluation methods rely on static datasets and classification metrics.<n>We introduce FACT-AUDIT, an agent-driven framework that adaptively and dynamically assesses LLMs' fact-checking capabilities.
arXiv Detail & Related papers (2025-02-25T07:44:22Z) - Enhancing Semantic Consistency of Large Language Models through Model Editing: An Interpretability-Oriented Approach [28.07366458452159]
Large Language Models (LLM) generate inconsistent and sometimes contradictory outputs when presented with a prompt that has equivalent semantics but is expressed differently from the original prompt.<n>To achieve semantic consistency of an LLM, one of the key approaches is to finetune the model with prompt-output pairs with semantically equivalent meanings.<n>We propose a more interpretable method (i.e., model editing) to enhance the semantic consistency of LLMs.
arXiv Detail & Related papers (2025-01-19T13:26:15Z) - Ranked from Within: Ranking Large Multimodal Models for Visual Question Answering Without Labels [64.94853276821992]
Large multimodal models (LMMs) are increasingly deployed across diverse applications.<n>Traditional evaluation methods are largely dataset-centric, relying on fixed, labeled datasets and supervised metrics.<n>We explore unsupervised model ranking for LMMs by leveraging their uncertainty signals, such as softmax probabilities.
arXiv Detail & Related papers (2024-12-09T13:05:43Z) - Model Attribution in LLM-Generated Disinformation: A Domain Generalization Approach with Supervised Contrastive Learning [26.02988481241285]
Modern large language models (LLMs) produce disinformation with human-like quality.
diversity in prompting methods used to generate disinformation complicates accurate source attribution.
We introduce the concept of model attribution as a domain generalization problem.
arXiv Detail & Related papers (2024-07-31T00:56:09Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
We investigate whether fine-tuning affects the intrinsic generalization ability intrinsic to Large Language Models (LLMs)
Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.
We observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model's generalization ability.
arXiv Detail & Related papers (2024-03-14T08:18:59Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information Extraction [49.15931834209624]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.<n>We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.<n>By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.