MAWIFlow Benchmark: Realistic Flow-Based Evaluation for Network Intrusion Detection
- URL: http://arxiv.org/abs/2506.17041v1
- Date: Fri, 20 Jun 2025 14:51:35 GMT
- Title: MAWIFlow Benchmark: Realistic Flow-Based Evaluation for Network Intrusion Detection
- Authors: Joshua Schraven, Alexander Windmann, Oliver Niggemann,
- Abstract summary: This paper introduces MAWIFlow, a flow-based benchmark derived from the MAWILAB v1.1 dataset.<n>The resulting datasets comprise temporally distinct samples from January 2011, 2016, and 2021, drawn from trans-Pacific backbone traffic.<n>Traditional machine learning methods, including Decision Trees, Random Forests, XGBoost, and Logistic Regression, are compared to a deep learning model based on a CNN-BiLSTM architecture.
- Score: 47.86433139298671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benchmark datasets for network intrusion detection commonly rely on synthetically generated traffic, which fails to reflect the statistical variability and temporal drift encountered in operational environments. This paper introduces MAWIFlow, a flow-based benchmark derived from the MAWILAB v1.1 dataset, designed to enable realistic and reproducible evaluation of anomaly detection methods. A reproducible preprocessing pipeline is presented that transforms raw packet captures into flow representations conforming to the CICFlowMeter format, while preserving MAWILab's original anomaly labels. The resulting datasets comprise temporally distinct samples from January 2011, 2016, and 2021, drawn from trans-Pacific backbone traffic. To establish reference baselines, traditional machine learning methods, including Decision Trees, Random Forests, XGBoost, and Logistic Regression, are compared to a deep learning model based on a CNN-BiLSTM architecture. Empirical results demonstrate that tree-based classifiers perform well on temporally static data but experience significant performance degradation over time. In contrast, the CNN-BiLSTM model maintains better performance, thus showing improved generalization. These findings underscore the limitations of synthetic benchmarks and static models, and motivate the adoption of realistic datasets with explicit temporal structure. All datasets, pipeline code, and model implementations are made publicly available to foster transparency and reproducibility.
Related papers
- Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
We present a method to jointly solve the sensing and model identification problems with simple implementation, efficient, and robust performance.<n>SINDy-SHRED uses Gated Recurrent Units to model sparse sensor measurements along with a shallow network decoder to reconstruct the full-temporal field from the latent state space.<n>We conduct systematic experimental studies on PDE data such as turbulent flows, real-world sensor measurements for sea surface temperature, and direct video data.
arXiv Detail & Related papers (2025-01-23T02:18:13Z) - SONNET: Enhancing Time Delay Estimation by Leveraging Simulated Audio [17.811771707446926]
We show that learning based methods can, even based on synthetic data, significantly outperform GCC-PHAT on novel real world data.
We provide our trained model, SONNET, which is runnable in real-time and works on novel data out of the box for many real data applications.
arXiv Detail & Related papers (2024-11-20T10:23:21Z) - Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data [39.40116554523575]
We present Drift-Resilient TabPFN, a fresh approach based on In-Context Learning with a Prior-Data Fitted Network.
It learns to approximate Bayesian inference on synthetic datasets drawn from a prior.
It improves accuracy from 0.688 to 0.744 and ROC AUC from 0.786 to 0.832 while maintaining stronger calibration.
arXiv Detail & Related papers (2024-11-15T23:49:23Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Boundary-aware Decoupled Flow Networks for Realistic Extreme Rescaling [49.215957313126324]
Recently developed generative methods, including invertible rescaling network (IRN) based and generative adversarial network (GAN) based methods, have demonstrated exceptional performance in image rescaling.
However, IRN-based methods tend to produce over-smoothed results, while GAN-based methods easily generate fake details.
We propose Boundary-aware Decoupled Flow Networks (BDFlow) to generate realistic and visually pleasing results.
arXiv Detail & Related papers (2024-05-05T14:05:33Z) - Concurrent Misclassification and Out-of-Distribution Detection for
Semantic Segmentation via Energy-Based Normalizing Flow [0.0]
Recent semantic segmentation models accurately classify test-time examples that are similar to a training dataset distribution.
We propose a generative model for concurrent in-distribution misclassification (IDM) and OOD detection that relies on a normalizing flow framework.
FlowEneDet achieves promising results on Cityscapes, Cityscapes-C, FishyScapes and SegmentMeIfYouCan benchmarks in IDM/OOD detection when applied to pretrained DeepLabV3+ and SegFormer semantic segmentation models.
arXiv Detail & Related papers (2023-05-16T17:02:57Z) - Emulating Spatio-Temporal Realizations of Three-Dimensional Isotropic
Turbulence via Deep Sequence Learning Models [24.025975236316842]
We use a data-driven approach to model a three-dimensional turbulent flow using cutting-edge Deep Learning techniques.
The accuracy of the model is assessed using statistical and physics-based metrics.
arXiv Detail & Related papers (2021-12-07T03:33:39Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Self-Challenging Improves Cross-Domain Generalization [81.99554996975372]
Convolutional Neural Networks (CNN) conduct image classification by activating dominant features that correlated with labels.
We introduce a simple training, Self-Challenging Representation (RSC), that significantly improves the generalization of CNN to the out-of-domain data.
RSC iteratively challenges the dominant features activated on the training data, and forces the network to activate remaining features that correlates with labels.
arXiv Detail & Related papers (2020-07-05T21:42:26Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMM is an end-to-end approach to generative semi supervised learning with normalizing flows.
We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data.
arXiv Detail & Related papers (2019-12-30T17:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.