A Multimodal In Vitro Diagnostic Method for Parkinson's Disease Combining Facial Expressions and Behavioral Gait Data
- URL: http://arxiv.org/abs/2506.17596v1
- Date: Sat, 21 Jun 2025 05:20:46 GMT
- Title: A Multimodal In Vitro Diagnostic Method for Parkinson's Disease Combining Facial Expressions and Behavioral Gait Data
- Authors: Wei Huang, Yinxuan Xu, Yintao Zhou, Zhengyu Li, Jing Huang, Meng Pang,
- Abstract summary: Parkinson's disease (PD) poses significant challenges to the lives of patients and their families.<n>In vitro diagnosis has garnered attention due to its non-invasive nature and low cost.<n>We propose a novel multimodal in vitro diagnostic method for PD, leveraging facial expressions and behavioral gait.
- Score: 9.985151413833364
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Parkinson's disease (PD), characterized by its incurable nature, rapid progression, and severe disability, poses significant challenges to the lives of patients and their families. Given the aging population, the need for early detection of PD is increasing. In vitro diagnosis has garnered attention due to its non-invasive nature and low cost. However, existing methods present several challenges: 1) limited training data for facial expression diagnosis; 2) specialized equipment and acquisition environments required for gait diagnosis, resulting in poor generalizability; 3) the risk of misdiagnosis or missed diagnosis when relying on a single modality. To address these issues, we propose a novel multimodal in vitro diagnostic method for PD, leveraging facial expressions and behavioral gait. Our method employs a lightweight deep learning model for feature extraction and fusion, aimed at improving diagnostic accuracy and facilitating deployment on mobile devices. Furthermore, we have established the largest multimodal PD dataset in collaboration with a hospital and conducted extensive experiments to validate the effectiveness of our proposed method.
Related papers
- A Methodological and Structural Review of Parkinsons Disease Detection Across Diverse Data Modalities [0.6827423171182153]
10 million people globally diagnosed globally 1 to 1.8 per 1,000 individuals, according to reports by the Japan Times and the Parkinson Foundation.<n>This study presents a comprehensive review of PD recognition systems across diverse data modalities.<n>Based on over 347 articles from leading scientific databases, this review examines key aspects such as data collection methods, settings, feature representations, and system performance.
arXiv Detail & Related papers (2025-05-01T13:47:45Z) - Artificial intelligence-enabled detection and assessment of Parkinson's disease using multimodal data: A survey [2.06242362470764]
Currently, there are no effective biomarkers for diagnosing Parkinson's disease, assessing its severity, or tracking its progression.<n>Numerous AI algorithms are now being used for PD diagnosis and treatment, capable of performing various classification tasks based on multimodal and heterogeneous disease symptom data.<n>They provide expressive feedback, including predicting the potential likelihood of PD, assessing the severity of individual or multiple symptoms, aiding in early detection, and evaluating rehabilitation and treatment effectiveness.
arXiv Detail & Related papers (2025-02-15T07:26:52Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Efficient and Comprehensive Feature Extraction in Large Vision-Language Model for Pathology Analysis [37.11302829771659]
Large vision-language models (LVLMs) are limited by input resolution constraints, hindering their efficiency and accuracy in pathology image analysis.<n>We propose two innovative strategies: the mixed task-guided feature enhancement, and the prompt-guided detail feature completion.<n>We trained the pathology-specialized LVLM, OmniPath, which significantly outperforms existing methods in diagnostic accuracy and efficiency.
arXiv Detail & Related papers (2024-12-12T18:07:23Z) - MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - SkinGEN: an Explainable Dermatology Diagnosis-to-Generation Framework with Interactive Vision-Language Models [54.32264601568605]
SkinGEN is a diagnosis-to-generation framework that generates reference demonstrations from diagnosis results provided by VLM.<n>We conduct a user study with 32 participants evaluating both the system performance and explainability.<n>Results demonstrate that SkinGEN significantly improves users' comprehension of VLM predictions and fosters increased trust in the diagnostic process.
arXiv Detail & Related papers (2024-04-23T05:36:33Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
arXiv Detail & Related papers (2022-05-12T08:59:57Z) - Deep Multi-modal Fusion of Image and Non-image Data in Disease Diagnosis
and Prognosis: A Review [8.014632186417423]
The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data produced during routine practice.
With the recent advances in multi-modal deep learning technologies, an increasingly large number of efforts have been devoted to a key question: how do we extract and aggregate multi-modal information to ultimately provide more objective, quantitative computer-aided clinical decision making?
This review will include the (1) overview of current multi-modal learning, (2) summarization of multi-modal fusion methods, (3) discussion of the performance, (4) applications in disease diagnosis and prognosis, and (5) challenges and future
arXiv Detail & Related papers (2022-03-25T18:50:03Z) - A Novel TSK Fuzzy System Incorporating Multi-view Collaborative Transfer
Learning for Personalized Epileptic EEG Detection [20.11589208667256]
We propose a TSK fuzzy system-based epilepsy detection algorithm that integrates multi-view collaborative transfer learning.
The proposed method has the potential to detect epileptic EEG signals effectively.
arXiv Detail & Related papers (2021-11-11T12:15:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.