Reinforcing User Interest Evolution in Multi-Scenario Learning for recommender systems
- URL: http://arxiv.org/abs/2506.17682v1
- Date: Sat, 21 Jun 2025 11:27:53 GMT
- Title: Reinforcing User Interest Evolution in Multi-Scenario Learning for recommender systems
- Authors: Zhijian Feng, Wenhao Zheng, Xuanji Xiao,
- Abstract summary: In real-world recommendation systems, users would engage in variety scenarios, such as homepages, search pages, and related recommendation pages.<n>The user interests may be inconsistent in different scenarios, due to differences in decision-making processes and preference expression.<n>We propose a novel reinforcement learning approach that models user preferences across scenarios by modeling user interest evolution across multiple scenarios.
- Score: 0.7533573796315849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world recommendation systems, users would engage in variety scenarios, such as homepages, search pages, and related recommendation pages. Each of these scenarios would reflect different aspects users focus on. However, the user interests may be inconsistent in different scenarios, due to differences in decision-making processes and preference expression. This variability complicates unified modeling, making multi-scenario learning a significant challenge. To address this, we propose a novel reinforcement learning approach that models user preferences across scenarios by modeling user interest evolution across multiple scenarios. Our method employs Double Q-learning to enhance next-item prediction accuracy and optimizes contrastive learning loss using Q-value to make model performance better. Experimental results demonstrate that our approach surpasses state-of-the-art methods in multi-scenario recommendation tasks. Our work offers a fresh perspective on multi-scenario modeling and highlights promising directions for future research.
Related papers
- Slow Thinking for Sequential Recommendation [88.46598279655575]
We present a novel slow thinking recommendation model, named STREAM-Rec.<n>Our approach is capable of analyzing historical user behavior, generating a multi-step, deliberative reasoning process, and delivering personalized recommendations.<n>In particular, we focus on two key challenges: (1) identifying the suitable reasoning patterns in recommender systems, and (2) exploring how to effectively stimulate the reasoning capabilities of traditional recommenders.
arXiv Detail & Related papers (2025-04-13T15:53:30Z) - Joint Modeling in Recommendations: A Survey [46.000357352884926]
Joint modeling approaches are central to overcoming limitations by integrating diverse tasks, scenarios, modalities, and behaviors in the recommendation process.<n>We define the scope of joint modeling through four distinct dimensions: multi-task, multi-scenario, multi-modal, and multi-behavior modeling.<n>We highlight several promising avenues for future exploration in joint modeling for recommendations and provide a concise conclusion to our findings.
arXiv Detail & Related papers (2025-02-28T16:14:00Z) - MDAP: A Multi-view Disentangled and Adaptive Preference Learning Framework for Cross-Domain Recommendation [63.27390451208503]
Cross-domain Recommendation systems leverage multi-domain user interactions to improve performance.
We propose the Multi-view Disentangled and Adaptive Preference Learning framework.
Our framework uses a multiview encoder to capture diverse user preferences.
arXiv Detail & Related papers (2024-10-08T10:06:45Z) - Supervised Fine-Tuning as Inverse Reinforcement Learning [8.044033685073003]
The prevailing approach to aligning Large Language Models (LLMs) typically relies on human or AI feedback.
In our work, we question the efficacy of such datasets and explore various scenarios where alignment with expert demonstrations proves more realistic.
arXiv Detail & Related papers (2024-03-18T17:52:57Z) - UMSE: Unified Multi-scenario Summarization Evaluation [52.60867881867428]
Summarization quality evaluation is a non-trivial task in text summarization.
We propose Unified Multi-scenario Summarization Evaluation Model (UMSE)
Our UMSE is the first unified summarization evaluation framework engaged with the ability to be used in three evaluation scenarios.
arXiv Detail & Related papers (2023-05-26T12:54:44Z) - An Information-Theoretic Approach for Estimating Scenario Generalization
in Crowd Motion Prediction [27.10815774845461]
We propose a novel scoring method, which characterizes generalization of models trained on source crowd scenarios and applied to target crowd scenarios.
The Interaction component aims to characterize the difficulty of scenario domains, while the diversity of a scenario domain is captured in the Diversity score.
Our experimental results validate the efficacy of the proposed method on several simulated and real-world (source,target) generalization tasks.
arXiv Detail & Related papers (2022-11-02T01:39:30Z) - Scenario-Adaptive and Self-Supervised Model for Multi-Scenario
Personalized Recommendation [35.4495536683099]
We propose a scenario-Adaptive and Self-Supervised (SASS) model to solve the three challenges mentioned above.
The model is created symmetrically both in user side and item side, so that we can get distinguishing representations of items in different scenarios.
This model also achieves more than 8.0% improvement on Average Watching Time Per User in online A/B tests.
arXiv Detail & Related papers (2022-08-24T11:44:00Z) - Scenario-aware and Mutual-based approach for Multi-scenario
Recommendation in E-Commerce [12.794276204716642]
How to make accurate recommendations for users in heterogeneous e-commerce scenarios is still a continuous research topic.
We propose a novel recommendation model named Scenario-aware Mutual Learning (SAML) that leverages the differences and similarities between multiple scenarios.
arXiv Detail & Related papers (2020-12-16T13:52:14Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
We present a new model-based reinforcement learning algorithm that learns a multi-headed dynamics model for dynamics generalization.
We incorporate context learning, which encodes dynamics-specific information from past experiences into the context latent vector.
Our method exhibits superior zero-shot generalization performance across a variety of control tasks, compared to state-of-the-art RL methods.
arXiv Detail & Related papers (2020-10-26T03:20:42Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
Explanations could help improve user experience and discover system defects.
We propose a novel explainable recommendation model through improving the transparency of the representation learning process.
arXiv Detail & Related papers (2020-08-21T05:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.