論文の概要: Physics and Computation: A Perspective From Non-Hermitian Quantum Computer
- arxiv url: http://arxiv.org/abs/2506.18012v1
- Date: Sun, 22 Jun 2025 12:26:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.697007
- Title: Physics and Computation: A Perspective From Non-Hermitian Quantum Computer
- Title(参考訳): 物理と計算:非エルミタン量子コンピュータの展望
- Authors: Qi Zhang, Biao Wu,
- Abstract要約: NQCは極めて強力であり、すべてのNP問題を解くだけでなく、複雑性クラス$textPsharptextP$内のすべての問題を時間内に解くことができる。
- 参考スコア(独自算出の注目度): 6.9754404995027794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We elucidate the profound connection between physics and computation by proposing and examining the model of non-Hermitian quantum computer (NQC). In addition to conventional quantum gates such as the Hadamard gate, phase gate, and CNOT gate, this computing model incorporates a non-unitary quantum gate $G$.We show that NQC is extraordinarily powerful, not only capable of solving all NP problems but also all problems within the complexity class $\text{P}^{\sharp\text{P}}$ in polynomial time. We investigate two physical schemes for implementing the non-unitary gate $G$ and find that the remarkable computational power of NQC originates from the exponentially large amount of physical resources required in these implementations.
- Abstract(参考訳): 非エルミート量子コンピュータ(NQC)のモデルを提案し,検討することにより,物理と計算の深い関係を解明する。
アダマールゲート、位相ゲート、CNOTゲートなどの従来の量子ゲートに加えて、この計算モデルは非単位量子ゲートを$G$として組み込む。
NQC は極端に強力であり、すべてのNP問題を解くだけでなく、複雑性クラス $\text{P}^{\sharp\text{P}}$ 内のすべての問題を多項式時間で解くことができる。
非単位ゲートを$G$で実装するための2つの物理スキームを調査し、NQCの卓越した計算能力は、これらの実装で要求される膨大な物理資源から生じることを見出した。
関連論文リスト
- Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
本稿では,古典計算機における量子化学の柱である結合クラスタ(CC)理論に基づく状態準備法を提案する。
提案手法は,従来の計算オーバーヘッドを低減し,CNOTおよびTゲートの数を平均で28%,57%削減する。
論文 参考訳(メタデータ) (2024-06-17T14:10:10Z) - Universal quantum computation using quantum annealing with the transverse-field Ising Hamiltonian [0.0]
逆場イジング・ハミルトニアンを用いた普遍量子計算の実践的実装法を提案する。
我々の提案はD-Waveデバイスと互換性があり、大規模ゲートベースの量子コンピュータの実現の可能性を広げている。
論文 参考訳(メタデータ) (2024-02-29T12:47:29Z) - Full Quantum Process Tomography of a Universal Entangling Gate on an
IBM's Quantum Computer [0.0]
我々は、実量子ハードウェアを用いて、普遍的な2量子エンタングゲートであるSQSCZゲートを徹底的に解析する。
我々の分析では、SQSCZゲートの圧縮可能な忠実度とノイズ特性を明らかにし、プロセス忠実度はそれぞれ97.27098%$と8.99383%$に達した。
論文 参考訳(メタデータ) (2024-02-10T13:25:01Z) - Averaging gate approximation error and performance of Unitary Coupled Cluster ansatz in Pre-FTQC Era [0.0]
フォールトトレラント量子計算(FTQC)は、雑音耐性のある方法で量子アルゴリズムを実装するために不可欠である。
FTQCでは、量子回路はフォールトトレラントの実装が可能な普遍ゲートに分解される。
本稿では,所定の量子回路に対するClifford+$T$分解誤差を非偏極雑音としてモデル化できることを提案する。
論文 参考訳(メタデータ) (2023-01-10T19:00:01Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Towards the real-time evolution of gauge-invariant $\mathbb{Z}_2$ and
$U(1)$ quantum link models on NISQ Hardware with error-mitigation [0.0]
我々は、ノイズのある中間スケール量子(NISQ)ハードウェアを用いたプラケットモデルにおいて、$mathbbZ$および$U(1)$ゲージのリアルタイムダイナミクスをベンチマークする。
複雑性を増大させるモデルのための量子回路を設計し、初期状態への回帰確率や局所保存電荷などの物理観測値を測定する。
論文 参考訳(メタデータ) (2021-09-30T12:22:21Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - Super-robust nonadiabatic geometric quantum control [0.0]
幾何学的量子ゲートの実行時間を短縮するために、非断熱的幾何量子計算(NGQC)と非断熱的ホロノミック量子計算(NHQC)が提案されている。
NGQC と NHQC のシナリオは、ほとんどの場合、標準的な動的ゲートよりも利点がないことを示す。
本稿では,超ロバストな量子制御手法を提案し,超ロバストな条件で高速かつロバストな量子制御を実現する。
論文 参考訳(メタデータ) (2020-08-05T14:50:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。