Towards Quantum Simulation of Rotating Nuclei using Quantum Variational Algorithms
- URL: http://arxiv.org/abs/2506.18059v1
- Date: Sun, 22 Jun 2025 15:00:57 GMT
- Title: Towards Quantum Simulation of Rotating Nuclei using Quantum Variational Algorithms
- Authors: Dhritimalya Roy,
- Abstract summary: Quantum variational algorithms (QVAs) are becoming increasingly potent tools for simulating quantum many-body systems.<n>The application of QVAs to schematic model simulation is examined in this work.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum variational algorithms (QVAs) are becoming increasingly potent tools for simulating quantum many-body systems, in particular, on noisy intermediate-scale quantum (NISQ) devices. The application of QVAs, more especially the Variational Quantum Eigensolver (VQE), to schematic model simulation is examined in this work. The cranked Nilsson-Strutinsky (CNS) framework serves as a foundation for comprehending high-spin phenomena in deformed nuclei. Using single-particle level spacings, pairing correlations, cranking (rotational) terms, and particle-number conservation, we build five increasingly complex CNS-like models. Quantum-classical hybrid procedures are used to solve these Hamiltonians after mapping them to qubit operators. Key metrics such as ground state energy, angular momentum expectation values $J_x$, and entanglement entropy are used to compare the results to exact diagonalization (ED). With variational errors typically $<0.005$, our results show agreement in energy and angular momentum predictions. Notably, we find slight variances in entanglement entropy between the ED and VQE results, which are influenced by numerical precision and ansatz expressivity. These results open the door to investigating larger, more realistic CNS-type systems through more expressive ansatz and validate the use of variational quantum algorithms in modelling rotational nuclear structure.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Demonstration of a variational quantum eigensolver with a solid-state spin system under ambient conditions [15.044543674753308]
Quantum simulators offer the potential to utilize the quantum nature of a physical system to study another physical system.
The variational-quantum-eigensolver algorithm is a particularly promising application for investigating molecular electronic structures.
Spin-based solid-state qubits have the advantage of long decoherence time and high-fidelity quantum gates.
arXiv Detail & Related papers (2024-07-23T09:17:06Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Simulations in Effective Model Spaces (I): Hamiltonian
Learning-VQE using Digital Quantum Computers and Application to the
Lipkin-Meshkov-Glick Model [0.0]
We introduce an iterative hybrid-classical-quantum algorithm, Hamiltonian learning variational quantum eigensolver (HL-VQE)
HL-VQE is found to provide an exponential improvement in Lipkin-Meshkov-Glick model calculations.
This work constitutes a step in the development of entanglement-driven quantum algorithms for the description of nuclear systems.
arXiv Detail & Related papers (2023-01-14T21:10:02Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Improved accuracy on noisy devices by non-unitary Variational Quantum
Eigensolver for chemistry applications [0.0]
We propose a modification of the Variational Quantum Eigensolver algorithm for electronic structure optimization using quantum computers.
A non-unitary operator is combined with the original system Hamiltonian leading to a new variational problem with a simplified wavefunction Ansatz.
arXiv Detail & Related papers (2021-01-22T20:17:37Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.