Taming Vision-Language Models for Medical Image Analysis: A Comprehensive Review
- URL: http://arxiv.org/abs/2506.18378v1
- Date: Mon, 23 Jun 2025 08:11:24 GMT
- Title: Taming Vision-Language Models for Medical Image Analysis: A Comprehensive Review
- Authors: Haoneng Lin, Cheng Xu, Jing Qin,
- Abstract summary: Modern Vision-Language Models (VLMs) exhibit unprecedented capabilities in cross-modal semantic understanding.<n>They have emerged as a promising solution for a wide range of medical image analysis tasks.<n>However, adapting general-purpose VLMs to medical domain poses numerous challenges.
- Score: 10.184536293994789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern Vision-Language Models (VLMs) exhibit unprecedented capabilities in cross-modal semantic understanding between visual and textual modalities. Given the intrinsic need for multi-modal integration in clinical applications, VLMs have emerged as a promising solution for a wide range of medical image analysis tasks. However, adapting general-purpose VLMs to medical domain poses numerous challenges, such as large domain gaps, complicated pathological variations, and diversity and uniqueness of different tasks. The central purpose of this review is to systematically summarize recent advances in adapting VLMs for medical image analysis, analyzing current challenges, and recommending promising yet urgent directions for further investigations. We begin by introducing core learning strategies for medical VLMs, including pretraining, fine-tuning, and prompt learning. We then categorize five major VLM adaptation strategies for medical image analysis. These strategies are further analyzed across eleven medical imaging tasks to illustrate their current practical implementations. Furthermore, we analyze key challenges that impede the effective adaptation of VLMs to clinical applications and discuss potential directions for future research. We also provide an open-access repository of related literature to facilitate further research, available at https://github.com/haonenglin/Awesome-VLM-for-MIA. It is anticipated that this article can help researchers who are interested in harnessing VLMs in medical image analysis tasks have a better understanding on their capabilities and limitations, as well as current technical barriers, to promote their innovative, robust, and safe application in clinical practice.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration [57.98393950821579]
We introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM)<n>Inspired by our empirical findings, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director.<n>This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases.
arXiv Detail & Related papers (2025-06-24T17:52:43Z) - UMIT: Unifying Medical Imaging Tasks via Vision-Language Models [17.65946656129399]
UMIT is a unified multi-modal, multi-task VLM designed specifically for medical imaging tasks.<n>It is able to solve various tasks, including visual question answering, disease detection, and medical report generation.<n>It supports both English and Chinese, expanding its applicability globally.
arXiv Detail & Related papers (2025-03-20T06:43:36Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Visual Question Answering in Ophthalmology: A Progressive and Practical Perspective [3.362457692154382]
Visual Question Answering (VQA) combines computer vision and natural language processing to comprehend and respond to queries about medical images.
This review article explores the recent advancements and future prospects of VQA in ophthalmology from both theoretical and practical perspectives.
arXiv Detail & Related papers (2024-10-22T03:28:41Z) - From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice [14.739357670600103]
Large Language Models (LLMs) have rapidly evolved from text-based systems to multimodal platforms.<n>We examine the current landscape of MLLMs in healthcare, analyzing their applications across clinical decision support, medical imaging, patient engagement, and research.
arXiv Detail & Related papers (2024-09-14T02:35:29Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Evaluating large language models in medical applications: a survey [1.5923327069574245]
Large language models (LLMs) have emerged as powerful tools with transformative potential across numerous domains.
evaluating the performance of LLMs in medical contexts presents unique challenges due to the complex and critical nature of medical information.
arXiv Detail & Related papers (2024-05-13T05:08:33Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.