Latent Space Analysis for Melanoma Prevention
- URL: http://arxiv.org/abs/2506.18414v2
- Date: Fri, 25 Jul 2025 13:54:49 GMT
- Title: Latent Space Analysis for Melanoma Prevention
- Authors: Ciro Listone, Aniello Murano,
- Abstract summary: Melanoma represents a critical health risk, underscoring the need for early, interpretable diagnostic tools.<n>This work introduces a novel approach that extends beyond classification, enabling interpretable risk modelling.<n>The proposed method learns a structured latent space that captures semantic relationships among lesions, allowing for a nuanced, continuous assessment of morphological differences.
- Score: 5.441932327359051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Melanoma represents a critical health risk due to its aggressive progression and high mortality, underscoring the need for early, interpretable diagnostic tools. While deep learning has advanced in skin lesion classification, most existing models provide only binary outputs, offering limited clinical insight. This work introduces a novel approach that extends beyond classification, enabling interpretable risk modelling through a Conditional Variational Autoencoder. The proposed method learns a structured latent space that captures semantic relationships among lesions, allowing for a nuanced, continuous assessment of morphological differences. An SVM is also trained on this representation effectively differentiating between benign nevi and melanomas, demonstrating strong and consistent performance. More importantly, the learned latent space supports visual and geometric interpretation of malignancy, with the spatial proximity of a lesion to known melanomas serving as a meaningful indicator of risk. This approach bridges predictive performance with clinical applicability, fostering early detection, highlighting ambiguous cases, and enhancing trust in AI-assisted diagnosis through transparent and interpretable decision-making.
Related papers
- Deeply Dual Supervised learning for melanoma recognition [0.0]
The recognition of melanoma has garnered significant attention, demonstrating potential for improving diagnostic accuracy.<n>This paper presents a novel Deeply Dual Supervised Learning framework that integrates local and global feature extraction to enhance melanoma recognition.<n>Our framework significantly outperforms state-of-the-art methods in melanoma detection, achieving higher accuracy and better resilience against false positives.
arXiv Detail & Related papers (2025-08-04T02:22:26Z) - Adaptive Deep Learning for Multiclass Breast Cancer Classification via Misprediction Risk Analysis [0.8028869343053783]
Early detection is crucial for improving patient outcomes.<n>Computer-aided diagnostic approaches have significantly enhanced breast cancer detection.<n>However, these methods face challenges in multiclass classification, leading to frequent mispredictions.
arXiv Detail & Related papers (2025-03-17T03:25:28Z) - Revisiting Invariant Learning for Out-of-Domain Generalization on Multi-Site Mammogram Datasets [8.080495390226115]
This paper reassesses the application of invariant learning for breast cancer risk estimation based on mammograms.<n> Evaluation metrics include accuracy, average precision, and area under the curve.<n>This research examines the advantages, limitations, and challenges of invariant learning for mammogram classification.
arXiv Detail & Related papers (2025-03-09T20:28:04Z) - Doctor-in-the-Loop: An Explainable, Multi-View Deep Learning Framework for Predicting Pathological Response in Non-Small Cell Lung Cancer [0.6800826356148091]
Non-small cell lung cancer (NSCLC) remains a major global health challenge.<n>We propose Doctor-in-the-Loop, a novel framework that integrates expert-driven domain knowledge with explainable artificial intelligence techniques.<n>Our approach employs a gradual multi-view strategy, progressively refining the model's focus from broad contextual features to finer, lesion-specific details.
arXiv Detail & Related papers (2025-02-21T16:35:30Z) - Robust Melanoma Thickness Prediction via Deep Transfer Learning enhanced by XAI Techniques [39.97900702763419]
This study focuses on analyzing dermoscopy images to determine the depth of melanomas.
The Breslow depth, measured from the top of the granular layer to the deepest point of tumor invasion, serves as a crucial parameter for staging melanoma and guiding treatment decisions.
Various datasets, including ISIC and private collections, were used, comprising a total of 1162 images.
Results indicated that the models achieved significant improvements over previous methods.
arXiv Detail & Related papers (2024-06-19T11:07:55Z) - ContrastDiagnosis: Enhancing Interpretability in Lung Nodule Diagnosis
Using Contrastive Learning [23.541034347602935]
Clinicians' distrust of black box models has hindered the clinical deployment of AI products.
We propose ContrastDiagnosis, a straightforward yet effective interpretable diagnosis framework.
High diagnostic accuracy was achieved with AUC of 0.977 while maintain a high transparency and explainability.
arXiv Detail & Related papers (2024-03-08T13:00:52Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.