Deeply Dual Supervised learning for melanoma recognition
- URL: http://arxiv.org/abs/2508.01994v1
- Date: Mon, 04 Aug 2025 02:22:26 GMT
- Title: Deeply Dual Supervised learning for melanoma recognition
- Authors: Rujosh Polma, Krishnan Menon Iyer,
- Abstract summary: The recognition of melanoma has garnered significant attention, demonstrating potential for improving diagnostic accuracy.<n>This paper presents a novel Deeply Dual Supervised Learning framework that integrates local and global feature extraction to enhance melanoma recognition.<n>Our framework significantly outperforms state-of-the-art methods in melanoma detection, achieving higher accuracy and better resilience against false positives.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the application of deep learning in dermatology continues to grow, the recognition of melanoma has garnered significant attention, demonstrating potential for improving diagnostic accuracy. Despite advancements in image classification techniques, existing models still face challenges in identifying subtle visual cues that differentiate melanoma from benign lesions. This paper presents a novel Deeply Dual Supervised Learning framework that integrates local and global feature extraction to enhance melanoma recognition. By employing a dual-pathway structure, the model focuses on both fine-grained local features and broader contextual information, ensuring a comprehensive understanding of the image content. The framework utilizes a dual attention mechanism that dynamically emphasizes critical features, thereby reducing the risk of overlooking subtle characteristics of melanoma. Additionally, we introduce a multi-scale feature aggregation strategy to ensure robust performance across varying image resolutions. Extensive experiments on benchmark datasets demonstrate that our framework significantly outperforms state-of-the-art methods in melanoma detection, achieving higher accuracy and better resilience against false positives. This work lays the foundation for future research in automated skin cancer recognition and highlights the effectiveness of dual supervised learning in medical image analysis.
Related papers
- Latent Space Analysis for Melanoma Prevention [5.441932327359051]
Melanoma represents a critical health risk, underscoring the need for early, interpretable diagnostic tools.<n>This work introduces a novel approach that extends beyond classification, enabling interpretable risk modelling.<n>The proposed method learns a structured latent space that captures semantic relationships among lesions, allowing for a nuanced, continuous assessment of morphological differences.
arXiv Detail & Related papers (2025-06-23T08:49:57Z) - Deep BI-RADS Network for Improved Cancer Detection from Mammograms [3.686808512438363]
We introduce a novel multi-modal approach that combines textual BI-RADS lesion descriptors with visual mammogram content.
Our method employs iterative attention layers to effectively fuse these different modalities.
Experiments on the CBIS-DDSM dataset demonstrate substantial improvements across all metrics.
arXiv Detail & Related papers (2024-11-16T21:32:51Z) - FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
Diffusion Model (DM) has become a leading method in generating synthetic medical images, but it suffers from a critical twofold bias.
We propose FairSkin, a novel DM framework that mitigates these biases through a three-level resampling mechanism.
Our approach significantly improves the diversity and quality of generated images, contributing to more equitable skin disease detection in clinical settings.
arXiv Detail & Related papers (2024-10-29T21:37:03Z) - Robust Melanoma Thickness Prediction via Deep Transfer Learning enhanced by XAI Techniques [39.97900702763419]
This study focuses on analyzing dermoscopy images to determine the depth of melanomas.
The Breslow depth, measured from the top of the granular layer to the deepest point of tumor invasion, serves as a crucial parameter for staging melanoma and guiding treatment decisions.
Various datasets, including ISIC and private collections, were used, comprising a total of 1162 images.
Results indicated that the models achieved significant improvements over previous methods.
arXiv Detail & Related papers (2024-06-19T11:07:55Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Risk stratification of malignant melanoma using neural networks [0.4397520291340695]
This paper describes an image-based method that can achieve AUROC values of up to 0.78 without additional clinical information.
The importance of the domain gap between two different image sources is considered, as it is important to create usability independent of hardware components.
arXiv Detail & Related papers (2023-05-15T20:59:44Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Knowledge-aware Deep Framework for Collaborative Skin Lesion
Segmentation and Melanoma Recognition [34.59452639480664]
Melanoma diagnosis is still a challenging task due to the difficulty of incorporating the useful dermatologist clinical knowledge into the learning process.
We propose a novel knowledge-aware deep framework that incorporates some clinical knowledge into collaborative learning of two important melanoma diagnosis tasks.
Experimental results on two publicly available skin lesion datasets show the effectiveness of the proposed method for melanoma analysis.
arXiv Detail & Related papers (2021-06-07T09:33:45Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.