TRIZ Agents: A Multi-Agent LLM Approach for TRIZ-Based Innovation
- URL: http://arxiv.org/abs/2506.18783v1
- Date: Mon, 23 Jun 2025 15:53:14 GMT
- Title: TRIZ Agents: A Multi-Agent LLM Approach for TRIZ-Based Innovation
- Authors: Kamil Szczepanik, Jarosław A. Chudziak,
- Abstract summary: TRIZ, the Theory of Inventive Problem Solving, is a structured, knowledge-based framework for innovation and abstracting problems.<n>We propose an LLM-based multi-agent system, called TRIZ agents, each with specialized capabilities and tool access.<n>This multi-agent system leverages agents with various domain expertise to efficiently navigate TRIZ steps.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: TRIZ, the Theory of Inventive Problem Solving, is a structured, knowledge-based framework for innovation and abstracting problems to find inventive solutions. However, its application is often limited by the complexity and deep interdisciplinary knowledge required. Advancements in Large Language Models (LLMs) have revealed new possibilities for automating parts of this process. While previous studies have explored single LLMs in TRIZ applications, this paper introduces a multi-agent approach. We propose an LLM-based multi-agent system, called TRIZ agents, each with specialized capabilities and tool access, collaboratively solving inventive problems based on the TRIZ methodology. This multi-agent system leverages agents with various domain expertise to efficiently navigate TRIZ steps. The aim is to model and simulate an inventive process with language agents. We assess the effectiveness of this team of agents in addressing complex innovation challenges based on a selected case study in engineering. We demonstrate the potential of agent collaboration to produce diverse, inventive solutions. This research contributes to the future of AI-driven innovation, showcasing the advantages of decentralized problem-solving in complex ideation tasks.
Related papers
- Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
We introduce multi-agent cross-task experiential learning (MAEL), a novel framework that endows LLM-driven agents with explicit cross-task learning and experience accumulation.<n>During the experiential learning phase, we quantify the quality for each step in the task-solving workflow and store the resulting rewards.<n>During inference, agents retrieve high-reward, task-relevant experiences as few-shot examples to enhance the effectiveness of each reasoning step.
arXiv Detail & Related papers (2025-05-29T07:24:37Z) - ModelingAgent: Bridging LLMs and Mathematical Modeling for Real-World Challenges [72.19809898215857]
We introduce ModelingBench, a novel benchmark featuring real-world-inspired, open-ended problems from math modeling competitions across diverse domains.<n>These tasks require translating natural language into formal mathematical formulations, applying appropriate tools, and producing structured, defensible reports.<n>We also present ModelingAgent, a multi-agent framework that coordinates tool use, supports structured, creative solutions, and generates well-grounded, creative solutions.
arXiv Detail & Related papers (2025-05-21T03:33:23Z) - A Comprehensive Survey on Multi-Agent Cooperative Decision-Making: Scenarios, Approaches, Challenges and Perspectives [6.277211882332452]
Multi-agent cooperative decision-making involves multiple agents working together to complete established tasks and achieve specific objectives.<n>These techniques are widely applicable in real-world scenarios such as autonomous driving, drone navigation, disaster rescue, and simulated military confrontations.
arXiv Detail & Related papers (2025-03-17T17:45:46Z) - Multi-Agent Collaboration Mechanisms: A Survey of LLMs [6.545098975181273]
Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively.<n>This work provides an extensive survey of the collaborative aspect of MASs and introduces a framework to guide future research.
arXiv Detail & Related papers (2025-01-10T19:56:50Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - LLM-Based Multi-Agent Systems for Software Engineering: Literature Review, Vision and the Road Ahead [14.834072370183106]
This paper explores the transformative potential of integrating Large Language Models into Multi-Agent (LMA) systems.<n>By leveraging the collaborative and specialized abilities of multiple agents, LMA systems enable autonomous problem-solving, improve robustness, and provide scalable solutions for managing the complexity of real-world software projects.
arXiv Detail & Related papers (2024-04-07T07:05:40Z) - AutoTRIZ: Automating Engineering Innovation with TRIZ and Large Language Models [4.2817602622158395]
AutoTRIZ is an artificial ideation system that integrates Large Language Models (LLMs) to automate and enhance the Theory of Inventive Problem Solving (TRIZ) methodology.<n>By leveraging LLMs' vast pre-trained knowledge and advanced reasoning capabilities, AutoTRIZ offers a novel, generative, and interpretable approach to engineering innovation.<n>We demonstrate and evaluate the effectiveness of AutoTRIZ through comparative experiments with textbook cases and a real-world application in the design of a Battery Thermal Management System (BTMS)
arXiv Detail & Related papers (2024-03-13T02:53:36Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
Large Language Models (LLMs) have emerged as powerful tools for various real-world applications.
Despite their prowess, intrinsic generative abilities of LLMs may prove insufficient for handling complex tasks.
This paper proposes a structured framework tailored for LLM-based AI Agents.
arXiv Detail & Related papers (2023-08-07T09:22:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.