Understanding Software Engineering Agents: A Study of Thought-Action-Result Trajectories
- URL: http://arxiv.org/abs/2506.18824v1
- Date: Mon, 23 Jun 2025 16:34:52 GMT
- Title: Understanding Software Engineering Agents: A Study of Thought-Action-Result Trajectories
- Authors: Islem Bouzenia, Michael Pradel,
- Abstract summary: Large Language Model (LLM)-based agents are increasingly employed to automate complex software engineering tasks.<n>Despite their widespread adoption, the internal decision-making processes of these agents remain largely unexplored.<n>We present a large-scale empirical study of the thought-action-result trajectories of three state-of-the-art LLM-based agents.
- Score: 18.129031749321058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Model (LLM)-based agents are increasingly employed to automate complex software engineering tasks such as program repair and issue resolution. These agents operate by autonomously generating natural language thoughts, invoking external tools, and iteratively refining their solutions. Despite their widespread adoption, the internal decision-making processes of these agents remain largely unexplored, limiting our understanding of their operational dynamics and failure modes. In this paper, we present a large-scale empirical study of the thought-action-result trajectories of three state-of-the-art LLM-based agents: \textsc{RepairAgent}, \textsc{AutoCodeRover}, and \textsc{OpenHands}. We unify their interaction logs into a common format, capturing 120 trajectories and 2822 LLM interactions focused on program repair and issue resolution. Our study combines quantitative analyses of structural properties, action patterns, and token usage with qualitative assessments of reasoning coherence and feedback integration. We identify key trajectory characteristics such as iteration counts and token consumption, recurring action sequences, and the semantic coherence linking thoughts, actions, and their results. Our findings reveal behavioral motifs and anti-patterns that distinguish successful from failed executions, providing actionable insights for improving agent design, including prompting strategies, failure diagnosis, and anti-pattern detection. We release our dataset and annotation framework to support further research on transparent and robust autonomous software engineering agents.
Related papers
- I2I-STRADA -- Information to Insights via Structured Reasoning Agent for Data Analysis [0.0]
Real-world data analysis requires a consistent cognitive workflow.<n>We introduce I2I-STRADA, an agentic architecture designed to formalize this reasoning process.
arXiv Detail & Related papers (2025-07-23T18:58:42Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - Understanding Software Engineering Agents Through the Lens of Traceability: An Empirical Study [15.97770416681533]
Software engineering agents (SWE agents) operate autonomously by interpreting user input and responding to environmental feedback.<n>We present the first systematic study of SWE agent behavior through the lens of execution traces.
arXiv Detail & Related papers (2025-06-10T00:41:54Z) - Unifying Language Agent Algorithms with Graph-based Orchestration Engine for Reproducible Agent Research [32.92036657863354]
Language agents powered by large language models (LLMs) have demonstrated remarkable capabilities in understanding, reasoning, and executing complex tasks.<n>However, developing robust agents presents significant challenges: substantial engineering overhead, lack of standardized components, and insufficient evaluation frameworks for fair comparison.<n>We introduce Agent Graph-based Orchestration for Reasoning and Assessment (AGORA), a flexible and abstraction framework that addresses these challenges.
arXiv Detail & Related papers (2025-05-30T08:46:23Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Factored Agents: Decoupling In-Context Learning and Memorization for Robust Tool Use [4.437184840125514]
We propose a novel factored agent architecture designed to overcome the limitations of traditional single-agent systems in agentic AI.<n>Our approach decomposes the agent into two specialized components: (1) a large language model that serves as a high level planner and in-context learner, and (2) a smaller language model which acts as a memorizer of tool format and output.<n> Empirical evaluations demonstrate that our factored architecture significantly improves planning accuracy and error resilience, while elucidating the inherent trade-off between in-context learning and static memorization.
arXiv Detail & Related papers (2025-03-29T01:27:11Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.<n>MeCo quantifies metacognitive scores by capturing high-level cognitive signals in the representation space.<n>MeCo is fine-tuning-free and incurs minimal cost.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - Agentic Reasoning: Reasoning LLMs with Tools for the Deep Research [7.4327380079414676]
We introduce Agentic Reasoning, a framework that enhances large language model (LLM) reasoning by integrating external tool-using agents.<n>Our framework introduces the Mind Map agent, which constructs a structured knowledge graph to track logical relationships.<n> Evaluations on PhD-level scientific reasoning (GPQA) and domain-specific deep research tasks demonstrate that our approach significantly outperforms existing models.
arXiv Detail & Related papers (2025-02-07T04:08:46Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - Advancing Code Coverage: Incorporating Program Analysis with Large Language Models [8.31978033489419]
We propose TELPA, a novel technique to generate tests that can reach hard-to-cover branches.<n>Our experimental results on 27 open-source Python projects demonstrate that TELPA significantly outperforms the state-of-the-art SBST and LLM-based techniques.
arXiv Detail & Related papers (2024-04-07T14:08:28Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.