Finite-size security analysis for quantum protocols: A Python framework using the Entropy Accumulation Theorem with graphical interface
- URL: http://arxiv.org/abs/2506.18888v1
- Date: Mon, 23 Jun 2025 17:56:38 GMT
- Title: Finite-size security analysis for quantum protocols: A Python framework using the Entropy Accumulation Theorem with graphical interface
- Authors: Piotr Mironowicz, Mohamed Bourennane,
- Abstract summary: We present a comprehensive software framework for the finite-size security analysis of quantum random number generation (QRNG) and quantum key distribution (QKD) protocols.<n>Our framework includes both a Python API and an intuitive graphical user interface (GUI), designed to support protocol designers and experimentalists in certifying randomness and key rates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a comprehensive software framework for the finite-size security analysis of quantum random number generation (QRNG) and quantum key distribution (QKD) protocols, based on the Entropy Accumulation Theorem (EAT). Our framework includes both a Python API and an intuitive graphical user interface (GUI), designed to support protocol designers and experimentalists in certifying randomness and key rates under realistic, finite-resource conditions. At its core, the framework automates the construction of min-tradeoff functions via semi-definite programming and integrates them into a full entropy analysis pipeline. Users can specify device configurations, Bell-type inequalities or probability constraints, and select entropy measures such as min-entropy or von Neumann entropy. The package further provides tools for setting test parameters, computing secure randomness rates, and exploring tradeoffs between statistical confidence, protocol duration, and randomness output. We demonstrate the framework showing how users can move from theoretical constraints to practical security bounds with minimal overhead. This work contributes a reproducible, modular, and extensible platform for certifying quantum protocols under finite-size effects, significantly lowering the skill barrier to rigorous quantum cryptographic analysis.
Related papers
- Device-Independent Ternary Quantum Key Distribution Protocol Based on the Impossible Colouring Game [0.59374762912328]
We propose a quantum key distribution protocol based on the two-party Impossible Colouring pseudo-telepathy game.<n>The protocol makes use of non-contextuality from the Kochen-Specker theorem, providing a quantum advantage in a task that is classically unachievable.<n>The protocol is secure within an adequate security framework and demonstrates a higher key generation rate compared to standard QKD protocols.
arXiv Detail & Related papers (2025-05-21T14:52:31Z) - Bounding the conditional von-Neumann entropy for device independent cryptography and randomness extraction [0.0]
This paper introduces a numerical framework for establishing lower bounds on the conditional von-Neumann entropy in device-independent quantum cryptography and randomness extraction scenarios.
The framework offers an adaptable tool for practical quantum cryptographic protocols, expanding secure communication in untrusted environments.
arXiv Detail & Related papers (2024-11-07T16:48:49Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community.
We propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer.
arXiv Detail & Related papers (2024-07-17T18:38:48Z) - Generalized Rényi entropy accumulation theorem and generalized quantum probability estimation [0.0]
entropy accumulation theorem is a powerful tool in the security analysis of many device-dependent and device-independent cryptography protocols.
It relies on the construction of an affine min-tradeoff function, which can often be challenging to construct optimally in practice.
We deriving a new entropy accumulation bound, which yields significantly better finite-size performance.
arXiv Detail & Related papers (2024-05-09T17:11:00Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Statistically Meaningful Approximation: a Case Study on Approximating
Turing Machines with Transformers [50.85524803885483]
This work proposes a formal definition of statistically meaningful (SM) approximation which requires the approximating network to exhibit good statistical learnability.
We study SM approximation for two function classes: circuits and Turing machines.
arXiv Detail & Related papers (2021-07-28T04:28:55Z) - Practical Semi-Device Independent Randomness Generation Based on Quantum
State's Indistinguishability [0.0]
We present a proof-of-principle time-bin encoding semi-DI QRNG experiments based on a prepare-and-measure scheme.
We lower-bound the conditional min-entropy from the energy-bound and the input-output correlation, determining the amount of genuine randomness that can be certified.
arXiv Detail & Related papers (2021-04-22T15:39:36Z) - Computing conditional entropies for quantum correlations [10.549307055348596]
In particular, we find new upper bounds on the minimal global detection efficiency required to perform device-independent quantum key distribution.
We introduce the family of iterated mean quantum R'enyi divergences with parameters $alpha_k = 1+frac12k-1$ for positive integers $k$.
We show that the corresponding conditional entropies admit a particularly nice form which, in the context of device-independent optimization, can be relaxed to a semidefinite programming problem.
arXiv Detail & Related papers (2020-07-24T15:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.