論文の概要: Fast and Distributed Equivariant Graph Neural Networks by Virtual Node Learning
- arxiv url: http://arxiv.org/abs/2506.19482v1
- Date: Tue, 24 Jun 2025 10:17:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.587201
- Title: Fast and Distributed Equivariant Graph Neural Networks by Virtual Node Learning
- Title(参考訳): 仮想ノード学習による高速かつ分散同変グラフニューラルネットワーク
- Authors: Yuelin Zhang, Jiacheng Cen, Jiaqi Han, Wenbing Huang,
- Abstract要約: 我々はFastEGNNとDistEGNNを紹介した。
FastEGNNは、実際のノードの大きな未順序グラフを効果的に近似する、小さな順序付き仮想ノードセットを使用している。
超大規模幾何学グラフに対しては,仮想ノードがサブグラフ間のグローバルブリッジとして機能する分散拡張であるDistEGNNを提案する。
- 参考スコア(独自算出の注目度): 14.747385425154247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equivariant Graph Neural Networks (GNNs) have achieved remarkable success across diverse scientific applications. However, existing approaches face critical efficiency challenges when scaling to large geometric graphs and suffer significant performance degradation when the input graphs are sparsified for computational tractability. To address these limitations, we introduce FastEGNN and DistEGNN, two novel enhancements to equivariant GNNs for large-scale geometric graphs. FastEGNN employs a key innovation: a small ordered set of virtual nodes that effectively approximates the large unordered graph of real nodes. Specifically, we implement distinct message passing and aggregation mechanisms for different virtual nodes to ensure mutual distinctiveness, and minimize Maximum Mean Discrepancy (MMD) between virtual and real coordinates to achieve global distributedness. This design enables FastEGNN to maintain high accuracy while efficiently processing large-scale sparse graphs. For extremely large-scale geometric graphs, we present DistEGNN, a distributed extension where virtual nodes act as global bridges between subgraphs in different devices, maintaining consistency while dramatically reducing memory and computational overhead. We comprehensively evaluate our models across four challenging domains: N-body systems (100 nodes), protein dynamics (800 nodes), Water-3D (8,000 nodes), and our new Fluid113K benchmark (113,000 nodes). Results demonstrate superior efficiency and performance, establishing new capabilities in large-scale equivariant graph learning. Code is available at https://github.com/GLAD-RUC/DistEGNN.
- Abstract(参考訳): Equivariant Graph Neural Networks (GNN) は、様々な科学的応用において顕著な成功を収めている。
しかし、既存の手法では、大きな幾何グラフへのスケーリングにおいて重要な効率上の課題に直面し、入力グラフが計算的トラクタビリティのためにスパース化されると、性能が著しく低下する。
これらの制限に対処するため,FastEGNNとDistEGNNを導入する。
FastEGNNは、小さな順序の仮想ノードの集合であり、実際のノードの大きな未順序グラフを効果的に近似する。
具体的には、異なる仮想ノードに対して異なるメッセージパッシングとアグリゲーション機構を実装し、相互の識別性を確保し、仮想座標と実座標間の最大平均離散性(MMD)を最小化し、グローバルな分散性を実現する。
この設計により、FastEGNNは大規模なスパースグラフを効率的に処理しながら高い精度を維持することができる。
極めて大規模な幾何グラフに対しては、仮想ノードが異なるデバイス内のサブグラフ間のグローバルブリッジとして機能し、メモリと計算オーバーヘッドを劇的に削減しながら一貫性を維持する分散拡張であるDistEGNNを提案する。
N体システム(100ノード)、タンパク質動態(800ノード)、水3D(8,000ノード)、新しいFluid113Kベンチマーク(113,000ノード)の4つの課題領域でモデルを総合的に評価した。
その結果、大規模同変グラフ学習において、優れた効率性と性能を示し、新たな能力を確立した。
コードはhttps://github.com/GLAD-RUC/DistEGNNで入手できる。
関連論文リスト
- DeltaGNN: Graph Neural Network with Information Flow Control [5.563171090433323]
グラフニューラルネットワーク(GNN)は、メッセージパッシングプロセスの近傍集約を通じてグラフ構造化データを処理するように設計されている。
メッセージパッシングにより、GNNは短距離空間的相互作用を理解できるだけでなく、過度なスムーシングや過度なスカッシングに悩まされる。
本稿では,線形計算オーバーヘッドを伴うオーバー・スムーシングとオーバー・スキャッシングに対処するための,emph情報フロー制御機構を提案する。
さまざまなサイズ、トポロジ、密度、ホモフィリック比のグラフを含む10の実世界のデータセットを対象に、我々のモデルをベンチマークし、優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2025-01-10T14:34:20Z) - Graph Transformers for Large Graphs [57.19338459218758]
この研究は、モデルの特徴と重要な設計制約を識別することに焦点を当てた、単一の大規模グラフでの表現学習を前進させる。
この研究の重要な革新は、局所的な注意機構と組み合わされた高速な近傍サンプリング技術の作成である。
ogbn-products と snap-patents の3倍の高速化と16.8%の性能向上を報告し、ogbn-100M で LargeGT を5.9% の性能改善で拡張した。
論文 参考訳(メタデータ) (2023-12-18T11:19:23Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - $\rm A^2Q$: Aggregation-Aware Quantization for Graph Neural Networks [18.772128348519566]
グラフニューラルネットワーク(GNN)のための集約型混合精度量子化(rm A2Q$)を提案する。
本手法は,ノードレベルのタスクとグラフレベルのタスクで最大11.4%,9.5%の精度向上を実現し,専用ハードウェアアクセラレータで最大2倍の高速化を実現する。
論文 参考訳(メタデータ) (2023-02-01T02:54:35Z) - SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization [23.609017952951454]
グラフ計算のための特徴指向最適化を備えたスケーラブルグラフニューラルネットワーク(GNN)であるSCARAを提案する。
SCARAはノードの特徴からグラフの埋め込みを効率的に計算し、機能の結果を選択して再利用することでオーバーヘッドを減らします。
利用可能な最大10億のGNNデータセットであるPapers100M(1110万ノード、1.6Bエッジ)を100秒でプリ計算するのが効率的である。
論文 参考訳(メタデータ) (2022-07-19T10:32:11Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
グラフニューラルネットワーク(GNN)は、ノードのエゴネットワークのトポロジとエゴネットワークのノードの特徴を考慮したノード表現を演算する。
ノードが高品質な機能を持っていない場合、GNNはノードの埋め込みを計算するために埋め込み層を学び、それらを入力機能として使用する。
この埋め込みレイヤに関連するメモリを削減するため、NLPやレコメンダシステムのようなアプリケーションで一般的に使用されるハッシュベースのアプローチが利用可能である。
本稿では,グラフ内のノードの位置を利用して,必要なメモリを大幅に削減する手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T22:42:25Z) - Breaking the Limit of Graph Neural Networks by Improving the
Assortativity of Graphs with Local Mixing Patterns [19.346133577539394]
グラフニューラルネットワーク(GNN)は、複数のグラフベースの学習タスクで大きな成功を収めています。
入力グラフを近接情報と構造情報の両方を含む計算グラフに変換することに集中する。
構造と近接度を適応的に選択することで,様々な混合条件下での性能が向上することを示す。
論文 参考訳(メタデータ) (2021-06-11T19:18:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。