論文の概要: Extreme Learning Machines for Exoplanet Simulations: A Faster, Lightweight Alternative to Deep Learning
- arxiv url: http://arxiv.org/abs/2506.19679v1
- Date: Tue, 24 Jun 2025 14:46:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:28:51.831361
- Title: Extreme Learning Machines for Exoplanet Simulations: A Faster, Lightweight Alternative to Deep Learning
- Title(参考訳): 太陽系外惑星シミュレーションのための極端学習マシン:ディープラーニングの高速で軽量な代替手段
- Authors: Tara P. A. Tahseen, Luís F. Simões, Kai Hou Yip, Nikolaos Nikolaou, João M. Mendonça, Ingo P. Waldmann,
- Abstract要約: Extreme Learning Machine (ELM) は、複雑な物理モデルを高速化するための軽量で非段階的な機械学習アルゴリズムである。
異なるデータ構造を持つ2つのテストケースにおいて,EMMサロゲートモデルの評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Increasing resolution and coverage of astrophysical and climate data necessitates increasingly sophisticated models, often pushing the limits of computational feasibility. While emulation methods can reduce calculation costs, the neural architectures typically used--optimised via gradient descent--are themselves computationally expensive to train, particularly in terms of data generation requirements. This paper investigates the utility of the Extreme Learning Machine (ELM) as a lightweight, non-gradient-based machine learning algorithm for accelerating complex physical models. We evaluate ELM surrogate models in two test cases with different data structures: (i) sequentially-structured data, and (ii) image-structured data. For test case (i), where the number of samples $N$ >> the dimensionality of input data $d$, ELMs achieve remarkable efficiency, offering a 100,000$\times$ faster training time and a 40$\times$ faster prediction speed compared to a Bi-Directional Recurrent Neural Network (BIRNN), whilst improving upon BIRNN test performance. For test case (ii), characterised by $d >> N$ and image-based inputs, a single ELM was insufficient, but an ensemble of 50 individual ELM predictors achieves comparable accuracy to a benchmark Convolutional Neural Network (CNN), with a 16.4$\times$ reduction in training time, though costing a 6.9$\times$ increase in prediction time. We find different sample efficiency characteristics between the test cases: in test case (i) individual ELMs demonstrate superior sample efficiency, requiring only 0.28% of the training dataset compared to the benchmark BIRNN, while in test case (ii) the ensemble approach requires 78% of the data used by the CNN to achieve comparable results--representing a trade-off between sample efficiency and model complexity.
- Abstract(参考訳): 天体物理学および気候データの解像度とカバレッジの増大は、ますます洗練されたモデルを必要とし、しばしば計算可能性の限界を推し進める。
エミュレーション手法は計算コストを削減できるが、ニューラルネットワークは通常、勾配降下によって最適化される。
本稿では,複雑な物理モデルを高速化する軽量な非勾配機械学習アルゴリズムとして,ELM(Extreme Learning Machine)の有用性について検討する。
我々は、異なるデータ構造を持つ2つのテストケースにおいて、EMMサロゲートモデルを評価する。
一 順次構造化されたデータ、及び
(ii)画像構造化データ。
テストケース
i)サンプル数が$N$ >> 入力データの次元が$d$である場合、EMMは、BIRNNテスト性能を改善しながら、10,000$\times$高速なトレーニング時間と40$\times$高速な予測速度を提供する。
テストケース
(d>>N$と画像ベースの入力で特徴付けられるが、50個のEMM予測器のアンサンブルは、ベンチマークの畳み込みニューラルネットワーク(CNN)に匹敵する精度を達成し、トレーニング時間を16.4$\times$削減するが、予測時間の増加には6.9$\times$コストがかかる。
テストケース間で異なるサンプル効率特性:テストケースで
(i)個々のEMMは、ベンチマークBIRNNと比較してトレーニングデータセットの0.28%しか必要とせず、試験ケースでは、より優れたサンプル効率を示す。
(ii) アンサンブルアプローチでは、サンプル効率とモデルの複雑さのトレードオフを表現して、同等の結果を得るためにCNNが使用するデータの78%を必要とします。
関連論文リスト
- MesaNet: Sequence Modeling by Locally Optimal Test-Time Training [67.45211108321203]
我々は,最近提案されたMesa層の数値的に安定かつチャンクワイズ可能な並列化版を導入する。
テストタイムの最適トレーニングにより、従来のRNNよりも言語モデリングの難易度が低く、ダウンストリームベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2025-06-05T16:50:23Z) - An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
深層生成学習は、特定のMLモデルを使用して、既存のデータの基盤となる分布を学習し、実際のデータに似た合成サンプルを生成する。
本研究では,変分オートエンコーダ(VAE)を用いた深部生成モデルを用いて,データ拡張の有効性を評価することを目的とする。
本研究では,拡張データを用いてトレーニングしたディープニューラルネットワーク(DNN)モデルの予測において,データ拡張が精度の向上につながるかどうかを検討した。
論文 参考訳(メタデータ) (2024-10-24T18:15:48Z) - Data-Augmented Predictive Deep Neural Network: Enhancing the extrapolation capabilities of non-intrusive surrogate models [0.5735035463793009]
本稿では、カーネル動的モード分解(KDMD)を用いて、畳み込みオートエンコーダ(CAE)のエンコーダ部が生成する潜伏空間のダイナミクスを進化させる新しいディープラーニングフレームワークを提案する。
KDMD-decoder-extrapolated dataを元のデータセットに追加した後、この拡張データを用いてフィードフォワードディープニューラルネットワークと共にCAEをトレーニングする。
トレーニングされたネットワークは、トレーニング外のパラメータサンプルでトレーニング時間間隔外の将来の状態を予測できる。
論文 参考訳(メタデータ) (2024-10-17T09:26:14Z) - Transformer neural networks and quantum simulators: a hybrid approach for simulating strongly correlated systems [1.6494451064539348]
ニューラル量子状態(NQS)のハイブリッド最適化手法を提案する。
計算ベースからの射影測定と他の測定設定からの期待値の両方を用いることで、事前学習により状態の符号構造へのアクセスが可能になる。
我々の研究は、ニューラル量子状態の信頼性と効率的な最適化の道を開いた。
論文 参考訳(メタデータ) (2024-05-31T17:55:27Z) - A Lightweight Measure of Classification Difficulty from Application Dataset Characteristics [4.220363193932374]
効率的なコサイン類似度に基づく分類困難度尺度Sを提案する。
データセットのクラス数とクラス内およびクラス間の類似度メトリクスから計算される。
この手法を実践者が、繰り返しトレーニングやテストによって、6倍から29倍の速度で効率の良いモデルを選択するのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2024-04-09T03:27:09Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
ニューラルネットワークによるエネルギー最小化のためのGradual Optimization Learning Framework(GOLF)は、必要な追加データを大幅に削減する。
GOLFでトレーニングしたニューラルネットワークは,種々の薬物様分子のベンチマークにおいて,オラクルと同等に動作することを示す。
論文 参考訳(メタデータ) (2023-11-05T11:48:08Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
目的の新たな微分可能近似に基づく最適な合成データ生成法を提案する。
提案手法は,学習データ生成の高速化(最大50Times$)と,実世界のテストデータセットの精度向上(+8.7%$)を実現している。
論文 参考訳(メタデータ) (2020-08-16T11:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。