Automated Generation of Diverse Courses of Actions for Multi-Agent Operations using Binary Optimization and Graph Learning
- URL: http://arxiv.org/abs/2506.20031v2
- Date: Tue, 29 Jul 2025 00:31:23 GMT
- Title: Automated Generation of Diverse Courses of Actions for Multi-Agent Operations using Binary Optimization and Graph Learning
- Authors: Prithvi Poddar, Ehsan Tarkesh Esfahani, Karthik Dantu, Souma Chowdhury,
- Abstract summary: This paper presents a new theoretical formulation and computational framework to generate diverse pools of COAs for operations with soft variations in agent-task compatibility.<n>Tests of the COA generation process in a simulated environment demonstrate significant performance gain over a random walk baseline, small optimality gap in task sequencing, and execution time of about 50 minutes to plan up to 20 COAs for 5 agent/100 task operations.
- Score: 7.491865419760499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Operations in disaster response, search \& rescue, and military missions that involve multiple agents demand automated processes to support the planning of the courses of action (COA). Moreover, traverse-affecting changes in the environment (rain, snow, blockades, etc.) may impact the expected performance of a COA, making it desirable to have a pool of COAs that are diverse in task distributions across agents. Further, variations in agent capabilities, which could be human crews and/or autonomous systems, present practical opportunities and computational challenges to the planning process. This paper presents a new theoretical formulation and computational framework to generate such diverse pools of COAs for operations with soft variations in agent-task compatibility. Key to the problem formulation is a graph abstraction of the task space and the pool of COAs itself to quantify its diversity. Formulating the COAs as a centralized multi-robot task allocation problem, a genetic algorithm is used for (order-ignoring) allocations of tasks to each agent that jointly maximize diversity within the COA pool and overall compatibility of the agent-task mappings. A graph neural network is trained using a policy gradient approach to then perform single agent task sequencing in each COA, which maximizes completion rates adaptive to task features. Our tests of the COA generation process in a simulated environment demonstrate significant performance gain over a random walk baseline, small optimality gap in task sequencing, and execution time of about 50 minutes to plan up to 20 COAs for 5 agent/100 task operations.
Related papers
- Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation [2.8169258551959544]
We propose a novel framework that integrates Graph Neural Networks (GNNs), Deep Reinforcement Learning (DRL), and transformer-based mechanisms for enhanced multi-agent coordination and collective task execution.<n>Our approach leverages GNNs to model agent-agent and agent-goal interactions through adaptive graph construction, enabling efficient information aggregation and decision-making under constrained communication.
arXiv Detail & Related papers (2025-04-11T01:46:18Z) - Model Evolution Framework with Genetic Algorithm for Multi-Task Reinforcement Learning [85.91908329457081]
Multi-task reinforcement learning employs a single policy to complete various tasks, aiming to develop an agent with generalizability across different scenarios.<n>Existing approaches typically use a routing network to generate specific routes for each task and reconstruct a set of modules into diverse models to complete multiple tasks simultaneously.<n>We propose a Model Evolution framework with Genetic Algorithm (MEGA), which enables the model to evolve during training according to the difficulty of the tasks.
arXiv Detail & Related papers (2025-02-19T09:22:34Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.<n>We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and Agent Generation [41.21899915378596]
We propose a multi-agent framework based on dynamic Task Decomposition and Agent Generation (TDAG)<n>This framework dynamically decomposes complex tasks into smaller subtasks and assigns each to a specifically generated subagent.<n>ItineraryBench is designed to assess agents' abilities in memory, planning, and tool usage across tasks of varying complexity.
arXiv Detail & Related papers (2024-02-15T18:27:37Z) - A Unified Architecture for Dynamic Role Allocation and Collaborative
Task Planning in Mixed Human-Robot Teams [0.0]
We present a novel architecture for dynamic role allocation and collaborative task planning in a mixed human-robot team of arbitrary size.
The architecture capitalizes on a centralized reactive and modular task-agnostic planning method based on Behavior Trees (BTs)
Different metrics used as MILP cost allow the architecture to favor various aspects of the collaboration.
arXiv Detail & Related papers (2023-01-19T12:30:56Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
We propose a novel framework for learning dynamic subtask assignment (LDSA) in cooperative MARL.
To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy.
We show that LDSA learns reasonable and effective subtask assignment for better collaboration.
arXiv Detail & Related papers (2022-05-05T10:46:16Z) - Evolving Hierarchical Memory-Prediction Machines in Multi-Task
Reinforcement Learning [4.030910640265943]
Behavioural agents must generalize across a variety of environments and objectives over time.
We use genetic programming to evolve highly-generalized agents capable of operating in six unique environments from the control literature.
We show that emergent hierarchical structure in the evolving programs leads to multi-task agents that succeed by performing a temporal decomposition and encoding of the problem environments in memory.
arXiv Detail & Related papers (2021-06-23T21:34:32Z) - Adaptive Procedural Task Generation for Hard-Exploration Problems [78.20918366839399]
We introduce Adaptive Procedural Task Generation (APT-Gen) to facilitate reinforcement learning in hard-exploration problems.
At the heart of our approach is a task generator that learns to create tasks from a parameterized task space via a black-box procedural generation module.
To enable curriculum learning in the absence of a direct indicator of learning progress, we propose to train the task generator by balancing the agent's performance in the generated tasks and the similarity to the target tasks.
arXiv Detail & Related papers (2020-07-01T09:38:51Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.