Irec: A Metacognitive Scaffolding for Self-Regulated Learning through Just-in-Time Insight Recall: A Conceptual Framework and System Prototype
- URL: http://arxiv.org/abs/2506.20156v1
- Date: Wed, 25 Jun 2025 06:23:39 GMT
- Title: Irec: A Metacognitive Scaffolding for Self-Regulated Learning through Just-in-Time Insight Recall: A Conceptual Framework and System Prototype
- Authors: Xuefei Hou, Xizhao Tan,
- Abstract summary: This paper introduces "Insight Recall," a novel paradigm that conceptualizes the context-triggered retrieval of personal past insights as a metacognitive scaffold to promote Self-Regulated Learning (SRL)<n>At its core, Irec uses a dynamic knowledge graph of the user's learning history.<n>To reduce cognitive load, Irec features a human-in-the-loop pipeline for LLM-based knowledge graph construction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The core challenge in learning has shifted from knowledge acquisition to effective Self-Regulated Learning (SRL): planning, monitoring, and reflecting on one's learning. Existing digital tools, however, inadequately support metacognitive reflection. Spaced Repetition Systems (SRS) use de-contextualized review, overlooking the role of context, while Personal Knowledge Management (PKM) tools require high manual maintenance. To address these challenges, this paper introduces "Insight Recall," a novel paradigm that conceptualizes the context-triggered retrieval of personal past insights as a metacognitive scaffold to promote SRL. We formalize this paradigm using the Just-in-Time Adaptive Intervention (JITAI) framework and implement a prototype system, Irec, to demonstrate its feasibility. At its core, Irec uses a dynamic knowledge graph of the user's learning history. When a user faces a new problem, a hybrid retrieval engine recalls relevant personal "insights." Subsequently, a large language model (LLM) performs a deep similarity assessment to filter and present the most relevant scaffold in a just-in-time manner. To reduce cognitive load, Irec features a human-in-the-loop pipeline for LLM-based knowledge graph construction. We also propose an optional "Guided Inquiry" module, where users can engage in a Socratic dialogue with an expert LLM, using the current problem and recalled insights as context. The contribution of this paper is a solid theoretical framework and a usable system platform for designing next-generation intelligent learning systems that enhance metacognition and self-regulation.
Related papers
- KAG-Thinker: Interactive Thinking and Deep Reasoning in LLMs via Knowledge-Augmented Generation [18.765025274967932]
We introduce KAG-Thinker, which upgrade KAG to a multi-turn interactive thinking and deep reasoning framework powered by a dedicated parameter-light large language model (LLM)<n>Our approach constructs a structured thinking process for solving complex problems, enhancing the the logical coherence and contextual consistency of the reasoning process.
arXiv Detail & Related papers (2025-06-21T14:58:53Z) - Socratic RL: A Novel Framework for Efficient Knowledge Acquisition through Iterative Reflection and Viewpoint Distillation [0.0]
Current Reinforcement Learning (RL) methodologies rely on simplistic, outcome-based reward signals.<n>This paper introduces Socratic Reinforcement Learning (Socratic-RL), a novel, process-oriented framework designed to address this limitation.<n>The framework employs a decoupled "Teacher-Student" architecture, where a "Teacher AI" analyzes interaction histories, extracts causal insights, and formulates them into structured "viewpoints"
arXiv Detail & Related papers (2025-06-16T10:57:58Z) - Re-ranking Reasoning Context with Tree Search Makes Large Vision-Language Models Stronger [51.01841635655944]
Recent advancements in Large Vision Language Models (LVLMs) have significantly improved performance in Visual Question Answering (VQA) tasks.<n>Existing methods still face challenges, such as the scarcity of knowledge with reasoning examples and erratic responses from retrieved knowledge.<n>We propose a multimodal RAG framework, termed RCTS, which enhances LVLMs by constructing a Reasoning Context-enriched knowledge base and a Tree Search re-ranking method.
arXiv Detail & Related papers (2025-06-09T14:00:57Z) - Chain of Methodologies: Scaling Test Time Computation without Training [77.85633949575046]
Large Language Models (LLMs) often struggle with complex reasoning tasks due to insufficient in-depth insights in their training data.<n>This paper introduces the Chain of the (CoM) framework that enhances structured thinking by integrating human methodological insights.
arXiv Detail & Related papers (2025-06-08T03:46:50Z) - Graph Retrieval-Augmented LLM for Conversational Recommendation Systems [52.35491420330534]
G-CRS (Graph Retrieval-Augmented Large Language Model for Conversational Recommender Systems) is a training-free framework that combines graph retrieval-augmented generation and in-context learning.<n>G-CRS achieves superior recommendation performance compared to existing methods without requiring task-specific training.
arXiv Detail & Related papers (2025-03-09T03:56:22Z) - Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models [31.769428095250912]
Auto-RAG is an autonomous iterative retrieval model centered on the reasoning capabilities of Large Language Models (LLMs)<n>We develop a method for autonomously synthesizing reasoning-based decision-making instructions in iterative retrieval.<n>Auto-RAG expresses the iterative retrieval process in natural language, enhancing interpretability.
arXiv Detail & Related papers (2024-11-29T03:01:05Z) - Composite Learning Units: Generalized Learning Beyond Parameter Updates to Transform LLMs into Adaptive Reasoners [0.0]
We introduce Composite Learning Units (CLUs) designed to transform reasoners into learners capable of continuous learning.
CLUs are built on an architecture that allows a reasoning model to maintain and evolve a dynamic knowledge repository.
We demonstrate CLUs' effectiveness through a cryptographic reasoning task, where they continuously evolve their understanding through feedback to uncover hidden transformation rules.
arXiv Detail & Related papers (2024-10-09T02:27:58Z) - HGOT: Hierarchical Graph of Thoughts for Retrieval-Augmented In-Context Learning in Factuality Evaluation [20.178644251662316]
We introduce the hierarchical graph of thoughts (HGOT) to enhance the retrieval of pertinent passages during in-context learning.
The framework employs the divide-and-conquer strategy to break down complex queries into manageable sub-queries.
It refines self-consistency majority voting for answer selection, which incorporates the recently proposed citation recall and precision metrics.
arXiv Detail & Related papers (2024-02-14T18:41:19Z) - Representation Learning with Large Language Models for Recommendation [33.040389989173825]
We propose a model-agnostic framework RLMRec to enhance recommenders with large language models (LLMs)empowered representation learning.<n>RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals.
arXiv Detail & Related papers (2023-10-24T15:51:13Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - Towards A Unified Agent with Foundation Models [18.558328028366816]
We investigate how to embed and leverage such abilities in Reinforcement Learning (RL) agents.
We design a framework that uses language as the core reasoning tool, exploring how this enables an agent to tackle a series of fundamental RL challenges.
We demonstrate substantial performance improvements over baselines in exploration efficiency and ability to reuse data from offline datasets.
arXiv Detail & Related papers (2023-07-18T22:37:30Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.