Define-ML: An Approach to Ideate Machine Learning-Enabled Systems
- URL: http://arxiv.org/abs/2506.20621v1
- Date: Wed, 25 Jun 2025 17:11:26 GMT
- Title: Define-ML: An Approach to Ideate Machine Learning-Enabled Systems
- Authors: Silvio Alonso, Antonio Pedro Santos Alves, Lucas Romao, Hélio Lopes, Marcos Kalinowski,
- Abstract summary: Machine learning (ML) in software systems demands specialized ideation approaches.<n>Traditional ideation methods like Lean Inception lack structured support for ML considerations.<n>This paper presents Define-ML, a framework that extends Lean Inception with tailored activities.
- Score: 1.3541839896498067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: [Context] The increasing adoption of machine learning (ML) in software systems demands specialized ideation approaches that address ML-specific challenges, including data dependencies, technical feasibility, and alignment between business objectives and probabilistic system behavior. Traditional ideation methods like Lean Inception lack structured support for these ML considerations, which can result in misaligned product visions and unrealistic expectations. [Goal] This paper presents Define-ML, a framework that extends Lean Inception with tailored activities - Data Source Mapping, Feature-to-Data Source Mapping, and ML Mapping - to systematically integrate data and technical constraints into early-stage ML product ideation. [Method] We developed and validated Define-ML following the Technology Transfer Model, conducting both static validation (with a toy problem) and dynamic validation (in a real-world industrial case study). The analysis combined quantitative surveys with qualitative feedback, assessing utility, ease of use, and intent of adoption. [Results] Participants found Define-ML effective for clarifying data concerns, aligning ML capabilities with business goals, and fostering cross-functional collaboration. The approach's structured activities reduced ideation ambiguity, though some noted a learning curve for ML-specific components, which can be mitigated by expert facilitation. All participants expressed the intention to adopt Define-ML. [Conclusion] Define-ML provides an openly available, validated approach for ML product ideation, building on Lean Inception's agility while aligning features with available data and increasing awareness of technical feasibility.
Related papers
- Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
arXiv Detail & Related papers (2025-07-21T10:52:14Z) - Graft: Integrating the Domain Knowledge via Efficient Parameter Synergy for MLLMs [56.76586846269894]
Multimodal Large Language Models (MLLMs) have achieved success across various domains.<n>Despite its importance, the study of knowledge sharing among domain-specific MLLMs remains largely underexplored.<n>We propose a unified parameter integration framework that enables modular composition of expert capabilities.
arXiv Detail & Related papers (2025-06-30T15:07:41Z) - Feature Engineering for Agents: An Adaptive Cognitive Architecture for Interpretable ML Monitoring [2.1205272468688574]
We propose a cognitive architecture for ML monitoring that applies feature engineering principles to agents based on Large Language Models.<n>Decision Procedure module simulates feature engineering through three key steps: Refactor, Break Down, and Compile.<n> Experiments using multiple LLMs demonstrate the efficacy of our approach, achieving significantly higher accuracy compared to various baselines.
arXiv Detail & Related papers (2025-06-11T13:48:25Z) - Modular Machine Learning: An Indispensable Path towards New-Generation Large Language Models [45.05285463251872]
We introduce a novel learning paradigm -- Modular Machine Learning (MML) -- as an essential approach toward new-generation large language models (LLMs)<n>MML decomposes the complex structure of LLMs into three interdependent components: modular representation, modular model, and modular reasoning.<n>We present a feasible implementation of MML-based LLMs via leveraging advanced techniques such as disentangled representation learning, neural architecture search and neuro-symbolic learning.
arXiv Detail & Related papers (2025-04-28T17:42:02Z) - How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
Large language models (LLMs) can assess relevance and support information retrieval (IR) tasks.<n>We investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability.
arXiv Detail & Related papers (2025-04-10T16:14:55Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [89.50068130832635]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation MLLMs by multimodal knowledge.<n>We propose Chain-of-Description for step-by-step visual understanding and integrate structured Chain-of-Thought (CoT) reasoning to support in-depth multimodal reasoning.<n>Experiments demonstrate SIcog's effectiveness in developing MLLMs with enhanced multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.<n>Existing evaluations tend to rely solely on a final success rate.<n>We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Identifying Concerns When Specifying Machine Learning-Enabled Systems: A
Perspective-Based Approach [1.2184324428571227]
PerSpecML is a perspective-based approach for specifying ML-enabled systems.
It helps practitioners identify which attributes, including ML and non-ML components, are important to contribute to the overall system's quality.
arXiv Detail & Related papers (2023-09-14T18:31:16Z) - Reasonable Scale Machine Learning with Open-Source Metaflow [2.637746074346334]
We argue that re-purposing existing tools won't solve the current productivity issues.
We introduce Metaflow, an open-source framework for ML projects explicitly designed to boost the productivity of data practitioners.
arXiv Detail & Related papers (2023-03-21T11:28:09Z) - Towards Perspective-Based Specification of Machine Learning-Enabled
Systems [1.3406258114080236]
This paper describes our work towards a perspective-based approach for specifying ML-enabled systems.
The approach involves analyzing a set of 45 ML concerns grouped into five perspectives: objectives, user experience, infrastructure, model, and data.
The main contribution of this paper is to provide two new artifacts that can be used to help specifying ML-enabled systems.
arXiv Detail & Related papers (2022-06-20T13:09:23Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.