On the Necessity of Output Distribution Reweighting for Effective Class Unlearning
- URL: http://arxiv.org/abs/2506.20893v2
- Date: Thu, 10 Jul 2025 22:55:52 GMT
- Title: On the Necessity of Output Distribution Reweighting for Effective Class Unlearning
- Authors: Yian Wang, Ali Ebrahimpour-Boroojeny, Hari Sundaram,
- Abstract summary: Forgetting specific classes from trained models is essential for enforcing user deletion rights and mitigating harmful or biased predictions.<n>Forgetting specific classes from trained models is essential for enforcing user deletion rights and mitigating harmful or biased predictions.<n>We show that our approach matches the results of full retraining in both metrics used for evaluation by prior work and the new metric we propose in this work.
- Score: 4.516437962353726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce an output-reweighting unlearning method, RWFT, a lightweight technique that erases an entire class from a trained classifier without full retraining. Forgetting specific classes from trained models is essential for enforcing user deletion rights and mitigating harmful or biased predictions. The full retraining is costly and existing unlearning methods fail to replicate the behavior of the retrained models when predicting samples from the unlearned class. We prove this failure by designing a variant of membership inference attacks, MIA-NN that successfully reveals the unlearned class for any of these methods. We propose a simple redistribution of the probability mass for the prediction on the samples in the forgotten class which is robust to MIA-NN. We also introduce a new metric based on the total variation (TV) distance of the prediction probabilities to quantify residual leakage to prevent future methods from susceptibility to the new attack. Through extensive experiments with state of the art baselines in machine unlearning, we show that our approach matches the results of full retraining in both metrics used for evaluation by prior work and the new metric we propose in this work. Compare to state-of-the-art methods, we gain 2.79% in previously used metrics and 111.45% in our new TV-based metric over the best existing method.
Related papers
- Active Data Sampling and Generation for Bias Remediation [0.0]
A mixed active sampling and data generation strategy -- called samplation -- is proposed to compensate during fine-tuning of a pre-trained classifer the unfair classifications it produces.<n>Using as case study Deep Models for visual semantic role labeling, the proposed method has been able to fully cure a simulated gender bias starting from a 90/10 imbalance.
arXiv Detail & Related papers (2025-03-26T10:42:15Z) - Prior2Posterior: Model Prior Correction for Long-Tailed Learning [0.41248472494152805]
We propose a novel approach to accurately model the effective prior of a trained model using textita posteriori probabilities.<n>We show that the proposed approach achieves new state-of-the-art (SOTA) on several benchmark datasets from the long-tail literature.
arXiv Detail & Related papers (2024-12-21T08:49:02Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - An Information Theoretic Evaluation Metric For Strong Unlearning [20.143627174765985]
We introduce the Information Difference Index (IDI), a novel white-box metric inspired by information theory.
IDI quantifies retained information in intermediate features by measuring mutual information between those features and the labels to be forgotten.
Our experiments demonstrate that IDI effectively measures the degree of unlearning across various datasets and architectures.
arXiv Detail & Related papers (2024-05-28T06:57:01Z) - Hessian-Free Online Certified Unlearning [8.875278412741695]
We develop an online unlearning algorithm that achieves near-instantaneous data removal.<n>We prove that our proposed method outperforms the state-of-the-art methods in terms of the unlearning and generalization guarantees.
arXiv Detail & Related papers (2024-04-02T07:54:18Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
We consider instance-wise unlearning, of which the goal is to delete information on a set of instances from a pre-trained model.
We propose two methods that reduce forgetting on the remaining data: 1) utilizing adversarial examples to overcome forgetting at the representation-level and 2) leveraging weight importance metrics to pinpoint network parameters guilty of propagating unwanted information.
arXiv Detail & Related papers (2023-01-27T07:53:50Z) - Learning to Re-weight Examples with Optimal Transport for Imbalanced
Classification [74.62203971625173]
Imbalanced data pose challenges for deep learning based classification models.
One of the most widely-used approaches for tackling imbalanced data is re-weighting.
We propose a novel re-weighting method based on optimal transport (OT) from a distributional point of view.
arXiv Detail & Related papers (2022-08-05T01:23:54Z) - FORML: Learning to Reweight Data for Fairness [2.105564340986074]
We introduce Fairness Optimized Reweighting via Meta-Learning (FORML)
FORML balances fairness constraints and accuracy by jointly optimizing training sample weights and a neural network's parameters.
We show that FORML improves equality of opportunity fairness criteria over existing state-of-the-art reweighting methods by approximately 1% on image classification tasks and by approximately 5% on a face prediction task.
arXiv Detail & Related papers (2022-02-03T17:36:07Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.