論文の概要: Evaluating Multimodal Large Language Models on Educational Textbook Question Answering
- arxiv url: http://arxiv.org/abs/2506.21596v2
- Date: Tue, 15 Jul 2025 09:14:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 15:29:04.800823
- Title: Evaluating Multimodal Large Language Models on Educational Textbook Question Answering
- Title(参考訳): 教育用教科書質問応答におけるマルチモーダル大言語モデルの評価
- Authors: Hessa A. Alawwad, Anas Zafar, Areej Alhothali, Usman Naseem, Ali Alkhathlan, Amani Jamal,
- Abstract要約: MLLM(Multimodal large language model)は、視覚言語タスクにおいて成功したが、複雑な教材を論じる能力はほとんど試験されていない。
本研究は、CK12-QAデータセットを用いた教科書質問応答(TQA)タスクにおいて、LLaVA-1.5やLLaMA 3.2-Visionを含む最先端MLLMの最初の評価を行う。
- 参考スコア(独自算出の注目度): 3.4729524020941063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal large language models (MLLMs) have shown success in vision-language tasks, but their ability to reason over complex educational materials remains largely untested. This work presents the first evaluation of state-of-the-art MLLMs, including LLaVA-1.5 and LLaMA 3.2-Vision, on the textbook question answering (TQA) task using the CK12-QA dataset. We introduce a multimodal retrieval-augmented generation (RAG) pipeline to simulate real-world learning by providing relevant lesson paragraphs and diagrams as context. Our zero-shot experiments reveal a critical trade-off: while retrieved context improves LLaVA's performance on text-based questions, it significantly degrades the accuracy of the more powerful LLaMA 3.2-Vision on diagram-based tasks, dropping its validation accuracy from 74.07% to 25.93%. We term this statistically significant phenomenon "catastrophic context interference." Furthermore, fine-tuning highlights architectural differences: LLaMA 3.2-Vision's performance improves to 71.16% on the test set, demonstrating its capacity to learn multimodal integration, whereas LLaVA's performance declines, indicating challenges with generalization. Our results underscore the challenges MLLMs face in modality prioritization and context integration, providing a benchmark and pointing to key directions for developing more robust AI-driven educational tools.
- Abstract(参考訳): MLLM(Multimodal large language model)は、視覚言語タスクにおいて成功したが、複雑な教材を論じる能力はほとんど試験されていない。
本研究は、CK12-QAデータセットを用いた教科書質問応答(TQA)タスクにおいて、LLaVA-1.5やLLaMA 3.2-Visionを含む最先端MLLMの最初の評価を行う。
本稿では,実世界の学習をシミュレートするためのマルチモーダル検索拡張生成(RAG)パイプラインを提案する。
検索されたコンテキストはテキストベースの質問におけるLLaVAのパフォーマンスを向上するが、図ベースのタスクにおけるより強力なLLaMA 3.2-Visionの精度は著しく低下し、検証精度は74.07%から25.93%に低下する。
この統計的に重要な現象を「破滅的な文脈干渉」と呼ぶ。
LLaMA 3.2-Visionのパフォーマンスは71.16%向上し、マルチモーダル統合を学習する能力を示しているが、LLaVAのパフォーマンスは低下し、一般化に伴う課題を示している。
我々の結果は、MLLMがモダリティ優先順位付けとコンテキスト統合で直面する課題を強調し、ベンチマークを提供し、より堅牢なAI駆動型教育ツールを開発するための重要な方向性を指し示します。
関連論文リスト
- True Multimodal In-Context Learning Needs Attention to the Visual Context [69.63677595066012]
MLLM(Multimodal Large Language Models)は、新しいタスクに適応したMICL(Multimodal In-Context Learning)を実現する。
現在のMLLMは、視覚的手がかりを無視し、テキストパターンを過度に無視する傾向にあり、真のマルチモーダル適応よりも単なるテキスト模倣に繋がる。
視覚的コンテキストへのモデルへの参加を促す,効率的な微調整戦略であるDynamic Attention Reallocation (DARA)を紹介した。
論文 参考訳(メタデータ) (2025-07-21T17:08:18Z) - Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs [28.20725794099928]
下流の多様なタスクに対する差別表現を学習する新しいフレームワークであるUniMEを紹介する。
最初の段階では、強力なLLMベースの教師モデルからテキスト識別的知識蒸留を行う。
第2段階では、識別表現学習をさらに進めるために、強陰性強化命令チューニングを導入する。
論文 参考訳(メタデータ) (2025-04-24T10:51:52Z) - Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation [53.84282335629258]
我々は、FG-BMKと呼ばれる包括的きめ細かい評価ベンチマークを導入し、1.01万の質問と0.33万の画像を含む。
本評価では,人間指向と機械指向の両方の観点からLVLMを体系的に検討する。
トレーニングパラダイム,モダリティアライメント,摂動感受性,および細粒度カテゴリー推論がタスクパフォーマンスに与える影響について,重要な知見を明らかにした。
論文 参考訳(メタデータ) (2025-04-21T09:30:41Z) - M2IV: Towards Efficient and Fine-grained Multimodal In-Context Learning in Large Vision-Language Models [11.542439154523647]
学習可能なtextbfVectors を LVLM に直接組み込んだ明示的なデモンストレーションを代用する textbfM2IV を提案する。
M2IVは、トレーニングを通じて堅牢なクロスモーダル忠実度と微粒なセマンティック蒸留を実現する。
実験の結果、M2IVはVanilla ICLと先行表現工学のアプローチを超越していることがわかった。
論文 参考訳(メタデータ) (2025-04-06T22:02:21Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
MLLM(Multimodal Large Language Models)は、視覚情報とテキスト情報を統合するための強力なツールとなっている。
本稿では,MLLMの知覚的理解と抽象的関係推論を評価するためのベンチマークVOILAを紹介する。
我々は,現在のMLLMが画像間関係の理解に苦慮し,高レベルの関係推論において限られた能力を示すことを明らかにした。
論文 参考訳(メタデータ) (2025-02-25T23:36:19Z) - Exploring Large Language Models for Multimodal Sentiment Analysis: Challenges, Benchmarks, and Future Directions [0.0]
マルチモーダル・アスペクトベース感性分析(MABSA)は、テキストや画像を含む多モーダル情報からアスペクト項とその対応する感情極性を抽出することを目的としている。
従来の教師付き学習手法はこの課題において有効性を示したが、大規模言語モデル(LLM)のMABSAへの適応性は未だ不明である。
Llama2、LLaVA、ChatGPTなどのLLMの最近の進歩は、一般的なタスクにおいて強力な能力を示しているが、MABSAのような複雑できめ細かなシナリオでは、その性能が過小評価されている。
論文 参考訳(メタデータ) (2024-11-23T02:17:10Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
本稿では,MLLM評価におけるLarge Language Model (LLM)バックボーンの役割について検討する。
本研究は4つのMLLMベンチマークと8つの最先端MLLMベンチマークを含む。
鍵となる発見は、いくつかのベンチマークでは視覚的な入力がなくても高いパフォーマンスを実現しており、最大50%のエラーレートは、LLMバックボーンにおける不十分な世界的知識に起因していることを示している。
論文 参考訳(メタデータ) (2024-10-16T07:49:13Z) - Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
VL(Vision-Language)研究の最近の進歩は、複雑な視覚的推論のための新しいベンチマークを引き起こした。
我々はCVR-LLM(Complex Visual Reasoning Large Language Models)を提案する。
提案手法は,反復的自己修正ループを用いて,画像の詳細なコンテキスト認識記述に変換する。
また、LLMの文脈的理解と推論を強化するために、新しいマルチモーダル・インコンテキスト学習(ICL)手法を導入する。
論文 参考訳(メタデータ) (2024-09-21T02:10:19Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - The Revolution of Multimodal Large Language Models: A Survey [46.84953515670248]
MLLM(Multimodal Large Language Models)は、視覚とテキストのモダリティをシームレスに統合することができる。
本稿では,近年の視覚的MLLMのレビュー,アーキテクチャ選択,マルチモーダルアライメント戦略,トレーニング手法について述べる。
論文 参考訳(メタデータ) (2024-02-19T19:01:01Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
MLLM(Multi-modal large language model)は、大規模言語モデル(LLM)に基づいて訓練される。
マルチモーダルなタスクでは優れているが、MLLMの純粋なNLP能力はしばしば過小評価され、テストされていない。
LLMをMLLMに移行するための一般的な戦略である視覚的インストラクションチューニングは、予期せぬ、興味深いことに、改善された真理性と倫理的整合性の両方を達成するのに役立ちます。
論文 参考訳(メタデータ) (2023-09-13T17:57:21Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z) - OCRBench: On the Hidden Mystery of OCR in Large Multimodal Models [122.27878464009181]
テキスト関連視覚タスクにおいて, GPT4V や Gemini などの大規模マルチモーダルモデルの包括的評価を行った。
OCRBenchには29のデータセットがあり、最も包括的なOCR評価ベンチマークが利用できる。
論文 参考訳(メタデータ) (2023-05-13T11:28:37Z) - DiMBERT: Learning Vision-Language Grounded Representations with
Disentangled Multimodal-Attention [101.99313208598569]
視覚と言語(V-L)タスクは、視覚内容と自然言語の両方を理解する必要がある。
視覚と言語に対する注意空間を分離したDiMBERT(Disentangled Multimodal-Attention BERT)を提案する。
DiMBERTは3つのタスクに対して最新のパフォーマンスを新たに設定する。
論文 参考訳(メタデータ) (2022-10-28T23:00:40Z) - Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation [79.72299298976525]
我々は、視覚言語知識蒸留(VLKD)を通して、テキスト事前学習言語モデル(PLM)を用いた視覚言語事前学習モデルの拡張を提案する。
実験の結果,複数モーダル生成タスクにおいて,視覚的質問応答や画像キャプションなどのゼロショット性能が強いことがわかった。
PLMの本来のテキスト言語理解と生成能力は、VLKDの後に維持される。
論文 参考訳(メタデータ) (2022-03-12T09:33:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。