ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation
- URL: http://arxiv.org/abs/2506.21931v1
- Date: Fri, 27 Jun 2025 05:45:59 GMT
- Title: ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation
- Authors: Reza Yousefi Maragheh, Pratheek Vadla, Priyank Gupta, Kai Zhao, Aysenur Inan, Kehui Yao, Jianpeng Xu, Praveen Kanumala, Jason Cho, Sushant Kumar,
- Abstract summary: ARAG is an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation.<n>ARAG integrates a multi-agent collaboration mechanism into the RAG pipeline.<n>ARAG significantly outperforms standard RAG and recency-based baselines.
- Score: 9.099080929623156
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) has shown promise in enhancing recommendation systems by incorporating external context into large language model prompts. However, existing RAG-based approaches often rely on static retrieval heuristics and fail to capture nuanced user preferences in dynamic recommendation scenarios. In this work, we introduce ARAG, an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation, which integrates a multi-agent collaboration mechanism into the RAG pipeline. To better understand the long-term and session behavior of the user, ARAG leverages four specialized LLM-based agents: a User Understanding Agent that summarizes user preferences from long-term and session contexts, a Natural Language Inference (NLI) Agent that evaluates semantic alignment between candidate items retrieved by RAG and inferred intent, a context summary agent that summarizes the findings of NLI agent, and an Item Ranker Agent that generates a ranked list of recommendations based on contextual fit. We evaluate ARAG accross three datasets. Experimental results demonstrate that ARAG significantly outperforms standard RAG and recency-based baselines, achieving up to 42.1% improvement in NDCG@5 and 35.5% in Hit@5. We also, conduct an ablation study to analyse the effect by different components of ARAG. Our findings highlight the effectiveness of integrating agentic reasoning into retrieval-augmented recommendation and provide new directions for LLM-based personalization.
Related papers
- AgentRecBench: Benchmarking LLM Agent-based Personalized Recommender Systems [17.329692234349768]
Agentic recommender systems are powered by Large Language Models (LLMs)<n>LLMs' advanced reasoning and role-playing capabilities enable autonomous, adaptive decision-making.<n>The field currently lacks standardized evaluation protocols to assess these methods.
arXiv Detail & Related papers (2025-05-26T07:45:11Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.<n>SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.<n>We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - RAG-Gym: Systematic Optimization of Language Agents for Retrieval-Augmented Generation [43.50113345998687]
We introduce RAG-Gym, a comprehensive platform that explores three optimization dimensions: (1) prompt engineering, (2) actor tuning, and (3) critic training.<n>For prompt engineering, we propose Re$2$Search, a novel agent incorporating reflection reasoning that significantly outperforms standard prompts.<n>In actor tuning, we evaluate three popular post-training algorithms with fine-grained process supervision and identify direct preference optimization as the most effective.
arXiv Detail & Related papers (2025-02-19T18:56:03Z) - C-3PO: Compact Plug-and-Play Proxy Optimization to Achieve Human-like Retrieval-Augmented Generation [13.120930059424975]
C-3PO is a proxy-centric framework that facilitates communication between retrievers and large language models.<n>Our framework implements three specialized agents that collaboratively optimize the entire RAG pipeline.
arXiv Detail & Related papers (2025-02-10T07:04:32Z) - Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
We propose a new Deliberative Recommendation task, which incorporates explicit reasoning about user preferences as an additional alignment goal.<n>We then introduce the Reasoning-powered Recommender framework for deliberative user preference alignment.
arXiv Detail & Related papers (2025-02-04T07:17:54Z) - RPO: Retrieval Preference Optimization for Robust Retrieval-Augmented Generation [33.85528514353727]
We introduce the Retrieval Preference Optimization (RPO) to adaptively leverage multi-source knowledge based on retrieval relevance.<n>RPO is the only RAG-dedicated alignment approach that quantifies the awareness of retrieval relevance in training.<n>Experiments on four datasets demonstrate that RPO outperforms RAG by 4-10% in accuracy without any extra component.
arXiv Detail & Related papers (2025-01-23T14:58:56Z) - Agentic Feedback Loop Modeling Improves Recommendation and User Simulation [55.857164472712455]
We propose a novel framework that emphasizes the feedback loop process to facilitate the collaboration between the recommendation agent and the user agent.<n>This iterative process enhances the ability of both agents to infer user behaviors, enabling more effective item recommendations and more accurate user simulations.
arXiv Detail & Related papers (2024-10-26T00:51:39Z) - DRDT: Dynamic Reflection with Divergent Thinking for LLM-based
Sequential Recommendation [53.62727171363384]
We introduce a novel reasoning principle: Dynamic Reflection with Divergent Thinking.
Our methodology is dynamic reflection, a process that emulates human learning through probing, critiquing, and reflecting.
We evaluate our approach on three datasets using six pre-trained LLMs.
arXiv Detail & Related papers (2023-12-18T16:41:22Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Rec is a user simulator in recommendation based on Large Language Models.
Each agent interacts with personalized recommender models in a page-by-page manner.
arXiv Detail & Related papers (2023-10-16T06:41:16Z) - Incentivizing Exploration with Selective Data Disclosure [70.11902902106014]
We propose and design recommendation systems that incentivize efficient exploration.
Agents arrive sequentially, choose actions and receive rewards, drawn from fixed but unknown action-specific distributions.
We attain optimal regret rate for exploration using a flexible frequentist behavioral model.
arXiv Detail & Related papers (2018-11-14T19:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.