Microscopic approach to the quantized light-matter interaction in semiconductor nanostructures: Complex coupled dynamics of excitons, biexcitons, and photons
- URL: http://arxiv.org/abs/2506.22220v1
- Date: Fri, 27 Jun 2025 13:37:15 GMT
- Title: Microscopic approach to the quantized light-matter interaction in semiconductor nanostructures: Complex coupled dynamics of excitons, biexcitons, and photons
- Authors: Hendrik Rose, Stefan Schumacher, Torsten Meier,
- Abstract summary: We present a fully quantized model to investigate the interaction between semiconductor and quantum light fields.<n>Our approach describes the coupled dynamics of the quantum light field and single and double electron-hole pairs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a microscopic and fully quantized model to investigate the interaction between semiconductor nanostructures and quantum light fields including the many-body Coloumb interaction between photoexcited electrons and holes. Our approach describes the coupled dynamics of the quantum light field and single and double electron-hole pairs, i.e., excitons and biexcitons, and exactly accounts for Coulomb many-body correlations and carrier band dispersions. Using a simplified yet exact approach, we study a one-dimensional two-band system interacting with a single-mode, two-photon quantum state within a Tavis$\unicode{x2013}$Cummings framework. By employing an exact coherent factorization scheme, the computational complexity is reduced significantly enabling numerical simulations. We also derive a simplified model which includes only the bound $1s$-exciton and biexciton states for comparison. Our simulations reveal distinct single- and two-photon Rabi oscillations, corresponding to photon-exciton and exciton-biexciton transitions. We demonstrate, in particular, that biexciton continuum states significantly modify the dynamics in a way that cannot be captured by simplified models which consider only bound states. Our findings emphasize the importance of a comprehensive microscopic modeling in order to accurately describe quantum optical phenomena of interacting electronic many-body systems.
Related papers
- Photon-mediated interactions and dynamics of coherently driven quantum emitters in complex photonic environments [41.94295877935867]
Born-Markov master equations have been extensively employed in the description of quantum optical phenomena.<n>We benchmark this modeling approach for the quantum dynamics of the emitter pair against exact calculations based on a macroscopic field quantization formalism.<n>Our analysis reveals four distinct regimes of laser driving and frequency splitting that lead to markedly different levels of accuracy in the effective model.
arXiv Detail & Related papers (2025-08-01T09:38:07Z) - Multi-Photon Quantum Rabi Models with Center-of-Mass Motion [45.73541813564926]
We introduce a rigorous, second-quantized framework for describing multi-$Lambda$-atoms in a cavity.<n>A key feature of our approach is the systematic application of a Hamiltonian averaging theory to the atomic field operators.<n>A significant finding is the emergence of a particle-particle interaction mediated by ancillary states.
arXiv Detail & Related papers (2025-07-07T09:50:48Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - How single-photon nonlinearity is quenched with multiple quantum
emitters: Quantum Zeno effect in collective interactions with $\Lambda$-level
atoms [49.1574468325115]
We show that the single-photon nonlinearity vanishes with the number of emitters.
The mechanism behind this behavior is the quantum Zeno effect, manifested in the slowdown of the photon-controlled dynamics.
arXiv Detail & Related papers (2024-01-13T06:55:18Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Extensible quantum simulation architecture based on atom-photon bound
states in an array of high-impedance resonators [0.0]
photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps.
Here we report on the concept and implementation of a novel microwave architecture consisting of an array of compact, high-impedance superconducting resonators.
We show coherent interactions between two atom-photon bound states, in both resonant and dispersive regimes, that are suitable for the implementation of SWAP and CZ two-qubit gates.
arXiv Detail & Related papers (2021-07-14T17:10:27Z) - Single-photon hologram of a zero-area pulse [0.0]
We experimentally demonstrate how the Hong-Ou-Mandel effect can be spectrally-resolved and harnessed to characterize a complex temporal mode of a single-photon.
The combination of bosonic quantum behavior with bandwidth-mismatched light-atom interaction is of fundamental importance for a deeper understanding of both phenomena, as well as their engineering offering applications in the characterization of ultra-fast transient processes.
arXiv Detail & Related papers (2021-05-06T16:37:34Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Vectorial polaritons in the quantum motion of a levitated nanosphere [0.0]
We show the generation of phonon-polaritons in the quantum motion of an optically-levitated nanosphere.
Our results pave the way to novel protocols for quantum information transfer between photonic and phononic components.
arXiv Detail & Related papers (2020-12-30T18:26:28Z) - Multimode photon blockade [2.7257871159660363]
We show a pure N-body interaction between microwave photons stored in an arbitrary number of electromagnetic modes.
We generate multimode interactions by using cavity photon number resolved drives on the transmon circuit to blockade any multiphoton state.
We harness the interaction for state preparation, preparing Fock states of increasing photon number via quantum optimal control pulses.
arXiv Detail & Related papers (2020-10-29T00:42:23Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.