Multimode photon blockade
- URL: http://arxiv.org/abs/2010.15292v1
- Date: Thu, 29 Oct 2020 00:42:23 GMT
- Title: Multimode photon blockade
- Authors: Srivatsan Chakram, Kevin He, Akash V. Dixit, Andrew E. Oriani, Ravi K.
Naik, Nelson Leung, Hyeokshin Kwon, Wen-Long Ma, Liang Jiang and David I.
Schuster
- Abstract summary: We show a pure N-body interaction between microwave photons stored in an arbitrary number of electromagnetic modes.
We generate multimode interactions by using cavity photon number resolved drives on the transmon circuit to blockade any multiphoton state.
We harness the interaction for state preparation, preparing Fock states of increasing photon number via quantum optimal control pulses.
- Score: 2.7257871159660363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactions are essential for the creation of correlated quantum many-body
states. While two-body interactions underlie most natural phenomena, three- and
four-body interactions are important for the physics of nuclei [1], exotic
few-body states in ultracold quantum gases [2], the fractional quantum Hall
effect [3], quantum error correction [4], and holography [5, 6]. Recently, a
number of artificial quantum systems have emerged as simulators for many-body
physics, featuring the ability to engineer strong interactions. However, the
interactions in these systems have largely been limited to the two-body
paradigm, and require building up multi-body interactions by combining two-body
forces. Here, we demonstrate a pure N-body interaction between microwave
photons stored in an arbitrary number of electromagnetic modes of a multimode
cavity. The system is dressed such that there is collectively no interaction
until a target total photon number is reached across multiple distinct modes,
at which point they interact strongly. The microwave cavity features 9 modes
with photon lifetimes of $\sim 2$ ms coupled to a superconducting transmon
circuit, forming a multimode circuit QED system with single photon
cooperativities of $\sim10^9$. We generate multimode interactions by using
cavity photon number resolved drives on the transmon circuit to blockade any
multiphoton state with a chosen total photon number distributed across the
target modes. We harness the interaction for state preparation, preparing Fock
states of increasing photon number via quantum optimal control pulses acting
only on the cavity modes. We demonstrate multimode interactions by generating
entanglement purely with uniform cavity drives and multimode photon blockade,
and characterize the resulting two- and three-mode W states using a new
protocol for multimode Wigner tomography.
Related papers
- SUPER excitation of quantum emitters is a multi-photon process [0.0]
swing-up of quantum emitter population scheme allows to populate the excited state of a quantum emitter with near-unity fidelity using two red-detuned laser pulses.
Our findings provide an unexpected physical interpretation of the SUPER scheme and unveil a new non-linear interaction between single emitters and multiple field modes.
arXiv Detail & Related papers (2024-06-25T13:28:02Z) - Strong interactions between integrated microresonators and alkali atomic vapors: towards single-atom, single-photon operation [2.7170666557133454]
Single photon operation is required for quantum gates and sources.
Cold atoms, quantum dots, and color centers in crystals are amongst the systems that have shown single photon operations.
A solution to this issue can be found in nanophotonic cavities, where light-matter interaction is enhanced and the volume of operation is small.
arXiv Detail & Related papers (2024-04-05T19:33:33Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Ultrastrong light-matter interaction in a multimode photonic crystal [0.1588748438612071]
We show that the transport of a single photon becomes a many-body problem, owing to the strong participation of multi-photon bound states.
This work opens exciting prospects for exploring nonlinear quantum optics at the single-photon level.
arXiv Detail & Related papers (2022-09-29T17:43:25Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Universal pair-polaritons in a strongly interacting Fermi gas [0.0]
We report on experiments using molecular transitions in a strongly interacting Fermi gas, directly coupling cavity photons to pairs of atoms.
The dependence of the pair-polariton spectrum on interatomic interactions is universal, independent of the transition used.
This represents a magnification of many-body effects by two orders of magnitude in energy.
arXiv Detail & Related papers (2021-03-03T15:06:06Z) - Seamless high-Q microwave cavities for multimode circuit QED [2.0590294143351064]
Multimode cavity quantum electrodynamics provides a versatile framework for quantum information processing and quantum optics.
One of the leading experimental platforms for cavity QED involves coupling a superconducting circuit to a 3D microwave cavity.
We realize a 3D multimode circuit QED system with single photon lifetimes of $2$ ms and cooperativities of $0.5-1.5times109$ across 9 modes of a novel seamless cavity.
arXiv Detail & Related papers (2020-10-30T17:22:03Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.