Concept-Level AI for Telecom: Moving Beyond Large Language Models
- URL: http://arxiv.org/abs/2506.22359v1
- Date: Fri, 27 Jun 2025 16:20:18 GMT
- Title: Concept-Level AI for Telecom: Moving Beyond Large Language Models
- Authors: Viswanath Kumarskandpriya, Abdulhalim Dandoush, Abbas Bradai, Ali Belgacem,
- Abstract summary: Large Language Models (LLMs) can be effectively applied to certain telecom problems.<n>But due to their inherent token-by-token processing and limited capacity for maintaining extended context, LLMs struggle to fulfill telecom-specific requirements.<n>This paper argues that adopting LCMs is not simply an incremental step, but a necessary evolutionary leap toward achieving robust and effective AI-driven telecom management.
- Score: 1.7922382138350863
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The telecommunications and networking domain stands at the precipice of a transformative era, driven by the necessity to manage increasingly complex, hierarchical, multi administrative domains (i.e., several operators on the same path) and multilingual systems. Recent research has demonstrated that Large Language Models (LLMs), with their exceptional general-purpose text analysis and code generation capabilities, can be effectively applied to certain telecom problems (e.g., auto-configuration of data plan to meet certain application requirements). However, due to their inherent token-by-token processing and limited capacity for maintaining extended context, LLMs struggle to fulfill telecom-specific requirements such as cross-layer dependency cascades (i.e., over OSI), temporal-spatial fault correlation, and real-time distributed coordination. In contrast, Large Concept Models (LCMs), which reason at the abstraction level of semantic concepts rather than individual lexical tokens, offer a fundamentally superior approach for addressing these telecom challenges. By employing hyperbolic latent spaces for hierarchical representation and encapsulating complex multi-layered network interactions within concise concept embeddings, LCMs overcome critical shortcomings of LLMs in terms of memory efficiency, cross-layer correlation, and native multimodal integration. This paper argues that adopting LCMs is not simply an incremental step, but a necessary evolutionary leap toward achieving robust and effective AI-driven telecom management.
Related papers
- Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
arXiv Detail & Related papers (2025-07-21T10:52:14Z) - Token Communication in the Era of Large Models: An Information Bottleneck-Based Approach [55.861432910722186]
UniToCom is a unified token communication paradigm that treats tokens as the fundamental units for both processing and wireless transmission.<n>We propose a generative information bottleneck (GenIB) principle, which facilitates the learning of tokens that preserve essential information.<n>We employ a causal Transformer-based multimodal large language model (MLLM) at the receiver to unify the processing of both discrete and continuous tokens.
arXiv Detail & Related papers (2025-07-02T14:03:01Z) - Sheaf-Based Decentralized Multimodal Learning for Next-Generation Wireless Communication Systems [32.21609864602662]
We propose Sheaf-DMFL, a novel decentralized multimodal learning framework to enhance collaboration among devices with diverse modalities.<n>We also propose an enhanced algorithm named Sheaf-DMFL-Att, which tailors the attention mechanism within each client to capture correlations among different modalities.
arXiv Detail & Related papers (2025-06-27T16:41:23Z) - Augmenting Multi-Agent Communication with State Delta Trajectory [31.127137626348098]
We propose a new communication protocol that transfers both natural language tokens and token-wise state transition trajectory from one agent to another.<n>We find that the sequence of state changes in LLMs after generating each token can better reflect the information hidden behind the inference process.<n> experimental results show that multi-agent systems with SDE achieve SOTA performance compared to other communication protocols.
arXiv Detail & Related papers (2025-06-24T00:38:25Z) - Token Communication-Driven Multimodal Large Models in Resource-Constrained Multiuser Networks [7.137830911253685]
multimodal large models pose challenges for deploying intelligent applications at the wireless edge.<n>These constraints manifest as limited bandwidth, computational capacity, and stringent latency requirements.<n>We propose a token communication paradigm that facilitates decentralized proliferations across user devices and edge infrastructure.
arXiv Detail & Related papers (2025-05-06T14:17:05Z) - QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning? [4.429189958406034]
Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL)<n>We propose a novel algorithm, textbfQLLM, which facilitates the automatic construction of credit assignment functions using large language models (LLMs)<n>Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-17T14:07:11Z) - Cooperative Multi-Agent Planning with Adaptive Skill Synthesis [16.228784877899976]
We present a novel multi-agent architecture that integrates vision-language models (VLMs) with a dynamic skill library and structured communication for decentralized closed-loop decision-making.<n>The skill library, bootstrapped from demonstrations, evolves via planner-guided tasks to enable adaptive strategies.<n>We demonstrate its strong performance against state-of-the-art MARL baselines across both symmetric and asymmetric scenarios.
arXiv Detail & Related papers (2025-02-14T13:23:18Z) - Hypergame Theory for Decentralized Resource Allocation in Multi-user Semantic Communications [60.63472821600567]
A novel framework for decentralized computing and communication resource allocation in multiuser SC systems is proposed.
The challenge of efficiently allocating communication and computing resources is addressed through the application of Stackelberg hyper game theory.
Simulation results show that the proposed Stackelberg hyper game results in efficient usage of communication and computing resources.
arXiv Detail & Related papers (2024-09-26T15:55:59Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - Exchange-of-Thought: Enhancing Large Language Model Capabilities through
Cross-Model Communication [76.04373033082948]
Large Language Models (LLMs) have recently made significant strides in complex reasoning tasks through the Chain-of-Thought technique.
We propose Exchange-of-Thought (EoT), a novel framework that enables cross-model communication during problem-solving.
arXiv Detail & Related papers (2023-12-04T11:53:56Z) - Large AI Model Empowered Multimodal Semantic Communications [48.73159237649128]
We propose a Large AI Model-based Multimodal SC (LAMMSC) framework.
We first present the Conditional-based Multimodal Alignment (MMA) that enables the transformation between multimodal and unimodal data.
Then, a personalized LLM-based Knowledge Base (LKB) is proposed, which allows users to perform personalized semantic extraction or recovery.
Finally, we apply the Generative adversarial network-based channel Estimation (CGE) for estimating the wireless channel state information.
arXiv Detail & Related papers (2023-09-03T19:24:34Z) - Rate-Adaptive Coding Mechanism for Semantic Communications With
Multi-Modal Data [23.597759255020296]
We propose a distributed multi-modal semantic communication framework incorporating the conventional channel encoder/decoder.
We establish a general rate-adaptive coding mechanism for various types of multi-modal semantic tasks.
Numerical results show that the proposed mechanism fares better than both conventional communication and existing semantic communication systems.
arXiv Detail & Related papers (2023-05-18T07:31:37Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
This work explores the large-scale multi-agent communication mechanism under a multi-agent reinforcement learning (MARL) setting.
We propose a novel framework termed as Learning Structured Communication (LSC) by using a more flexible and efficient communication topology.
arXiv Detail & Related papers (2020-02-11T07:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.