Active Learning for Forecasting Severity among Patients with Post Acute Sequelae of SARS-CoV-2
- URL: http://arxiv.org/abs/2506.22444v1
- Date: Wed, 11 Jun 2025 14:14:54 GMT
- Title: Active Learning for Forecasting Severity among Patients with Post Acute Sequelae of SARS-CoV-2
- Authors: Jing Wang, Amar Sra, Jeremy C. Weiss,
- Abstract summary: Postacute Sequelae of SARS-CoV-2, known as PASC, pose a significant challenge to healthcare systems worldwide.<n>Traditional models trained on structured data struggle to capture the nuanced progression of PASC.<n>We propose an Active Attention Network to predict the clinical risk and identify progression events related to the risk.
- Score: 9.671302518139724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The long-term effects of Postacute Sequelae of SARS-CoV-2, known as PASC, pose a significant challenge to healthcare systems worldwide. Accurate identification of progression events, such as hospitalization and reinfection, is essential for effective patient management and resource allocation. However, traditional models trained on structured data struggle to capture the nuanced progression of PASC. In this study, we introduce the first publicly available cohort of 18 PASC patients, with text time series features based on Large Language Model Llama-3.1-70B-Instruct and clinical risk annotated by clinical expert. We propose an Active Attention Network to predict the clinical risk and identify progression events related to the risk. By integrating human expertise with active learning, we aim to enhance clinical risk prediction accuracy and enable progression events identification with fewer number of annotation. The ultimate goal is to improves patient care and decision-making for SARS-CoV-2 patient.
Related papers
- Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - Attention-enabled Explainable AI for Bladder Cancer Recurrence Prediction [0.4369058206183195]
Non-muscle-invasive bladder cancer (NMIBC) recurrence rates soar as high as 70-80%.<n>Each recurrence triggers a cascade of invasive procedures, lifelong surveillance, and escalating healthcare costs.<n>Existing clinical prediction tools remain fundamentally flawed, often overestimating recurrence risk.
arXiv Detail & Related papers (2025-04-30T20:39:33Z) - Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
This project aims to develop and assess predictive models for the timely identification of cardiac arrest incidents.
We employ machine learning algorithms like XGBoost, Gradient Boosting, and Naive Bayes, alongside a deep learning (DL) approach with Recurrent Neural Networks (RNNs)
Rigorous experimentation and validation revealed the superior performance of the RNN model.
arXiv Detail & Related papers (2024-09-03T19:18:16Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [54.98321887435557]
This paper presents a suite of 23 meticulously curated AI-ready datasets covering multi-modal input features and 8 crucial prediction challenges in clinical trial design.<n>We provide basic validation methods for each task to ensure the datasets' usability and reliability.<n>We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Petal-X: Human-Centered Visual Explanations to Improve Cardiovascular Risk Communication [1.4613744540785565]
This work describes the design and implementation of Petal-X, a novel tool to support clinician-patient shared decision-making.
Petal-X relies on a novel visualization, Petal Product Plots, and a tailor-made global surrogate model of SCORE2, whose fidelity is comparable to that of the GSCs used in clinical practice.
arXiv Detail & Related papers (2024-06-26T18:48:50Z) - Event-Based Contrastive Learning for Medical Time Series [11.696805672885798]
Event-Based Contrastive Learning (EBCL) is a method for learning embeddings of heterogeneous patient data.
We demonstrate that EBCL can be used to construct models that yield improved performance on important downstream tasks.
arXiv Detail & Related papers (2023-12-16T03:50:24Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - COVID-Net Clinical ICU: Enhanced Prediction of ICU Admission for
COVID-19 Patients via Explainability and Trust Quantification [71.80459780697956]
We introduce COVID-Net Clinical ICU, a neural network for ICU admission prediction based on patient clinical data.
The proposed COVID-Net Clinical ICU was built using a clinical dataset from Hospital Sirio-Libanes comprising of 1,925 COVID-19 patients.
We conducted system-level insight discovery using a quantitative explainability strategy to study the decision-making impact of different clinical features.
arXiv Detail & Related papers (2021-09-14T14:16:32Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.