論文の概要: Differentiable Radar Ambiguity Functions: Mathematical Formulation and Computational Implementation
- arxiv url: http://arxiv.org/abs/2506.22935v1
- Date: Sat, 28 Jun 2025 16:06:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.635689
- Title: Differentiable Radar Ambiguity Functions: Mathematical Formulation and Computational Implementation
- Title(参考訳): 微分可能なレーダ曖昧性関数:数学的定式化と計算的実装
- Authors: Marc Bara Iniesta,
- Abstract要約: 本稿では、微分可能なレーダ曖昧性関数に対する最初の完全な数学的枠組みと計算的実装について述べる。
この手法をGRAF (Gradient-based Radar Ambiguity Function) と呼ぶ。
結果として実現された実装は、現代の自動微分フレームワークと互換性のある汎用的な差別化可能なあいまいさ関数を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ambiguity function is fundamental to radar waveform design, characterizing range and Doppler resolution capabilities. However, its traditional formulation involves non-differentiable operations, preventing integration with gradient-based optimization methods and modern machine learning frameworks. This paper presents the first complete mathematical framework and computational implementation for differentiable radar ambiguity functions. Our approach addresses the fundamental technical challenges that have prevented the radar community from leveraging automatic differentiation: proper handling of complex-valued gradients using Wirtinger calculus, efficient computation through parallelized FFT operations, numerical stability throughout cascaded operations, and composability with arbitrary differentiable operations. We term this approach GRAF (Gradient-based Radar Ambiguity Functions), which reformulates the ambiguity function computation to maintain mathematical equivalence while enabling gradient flow through the entire pipeline. The resulting implementation provides a general-purpose differentiable ambiguity function compatible with modern automatic differentiation frameworks, enabling new research directions including neural network-based waveform generation with ambiguity constraints, end-to-end optimization of radar systems, and integration of classical radar theory with modern deep learning. We provide complete implementation details and demonstrate computational efficiency suitable for practical applications. This work establishes the mathematical and computational foundation for applying modern machine learning techniques to radar waveform design, bridging classical radar signal processing with automatic differentiation frameworks.
- Abstract(参考訳): あいまいさ関数は、レーダー波形設計、特性範囲、ドップラー分解能の基本である。
しかし、従来の定式化には微分不可能な操作が含まれており、勾配に基づく最適化手法や現代の機械学習フレームワークとの統合を防いでいる。
本稿では、微分可能なレーダ曖昧性関数に対する最初の完全な数学的枠組みと計算的実装について述べる。
提案手法は,Wirtinger計算を用いた複素値勾配の適正処理,並列化FFT演算による効率的な計算,カスケード演算全体の数値安定性,任意の微分操作による構成性など,レーダコミュニティが自動微分を活用できないような基本的な技術的課題に対処する。
本稿では,この手法をGRAF (Gradient-based Radar Ambiguity Function) と呼ぶ。
その結果得られた実装は、現代の自動微分フレームワークと互換性のある汎用的な差別化可能なあいまいさ関数を提供し、あいまいさ制約付きニューラルネットワークベースの波形生成、レーダシステムのエンドツーエンド最適化、古典的レーダ理論と現代のディープラーニングの統合を含む新しい研究方向を可能にする。
実装の完全化と,実用化に適した計算効率の実証を行う。
この研究は、レーダ波形設計に現代の機械学習技術を適用し、古典的なレーダ信号処理を自動微分フレームワークでブリッジする数学的および計算的基盤を確立する。
関連論文リスト
- Towards Constraint-Based Adaptive Hypergraph Learning for Solving Vehicle Routing: An End-to-End Solution [4.965709007367529]
車両の経路問題は、広大な解空間と複雑な制約によって特徴づけられる。
本研究では,制約指向のハイパーグラフと強化学習を組み合わせた新しいエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-13T14:42:44Z) - Learning to optimize with convergence guarantees using nonlinear system theory [0.4143603294943439]
本研究では,スムーズな目的関数に対するアルゴリズムの非制約パラメトリゼーションを提案する。
特に、私たちのフレームワークは自動微分ツールと直接互換性があります。
論文 参考訳(メタデータ) (2024-03-14T13:40:26Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - DOF: Accelerating High-order Differential Operators with Forward
Propagation [40.71528485918067]
一般の2階微分演算子を精度を損なわずに計算するための効率的なフレームワークである差分演算子(DOF)を提案する。
我々は、効率が2倍改善され、どんなアーキテクチャでもメモリ消費が削減されたことを実証する。
実験結果から,本手法は従来の自動微分法(AutoDiff)よりも優れ,構造が2倍,空間が20倍近く向上していることがわかった。
論文 参考訳(メタデータ) (2024-02-15T05:59:21Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
圧縮可能なNavier-Stokes方程式を解くためのエンドツーエンドの微分可能なフレームワークを提案する。
この統合アプローチは、微分可能不連続なガレルキン解法とニューラルネットワークのソース項を組み合わせる。
提案するフレームワークの性能を2つの例で示す。
論文 参考訳(メタデータ) (2023-10-29T04:26:23Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Efficient Differentiable Simulation of Articulated Bodies [89.64118042429287]
本稿では, 音素の効率的な微分可能シミュレーション法を提案する。
これにより、ボディダイナミクスを深層学習フレームワークに統合することが可能になる。
提案手法を用いて, 調音システムによる強化学習を高速化できることを示す。
論文 参考訳(メタデータ) (2021-09-16T04:48:13Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
一般的な問題を解決するための適応アルゴリズムのための普遍的な枠組みを設計することが望まれる。
特に,本フレームワークは,非収束的設定支援の下で適応的手法を提供する。
論文 参考訳(メタデータ) (2021-06-15T15:16:28Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - Efficient Learning of Generative Models via Finite-Difference Score
Matching [111.55998083406134]
有限差分で任意の順序方向微分を効率的に近似する汎用戦略を提案する。
我々の近似は関数評価にのみ関係しており、これは並列で実行でき、勾配計算は行わない。
論文 参考訳(メタデータ) (2020-07-07T10:05:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。