Mode Collapse Happens: Evaluating Critical Interactions in Joint Trajectory Prediction Models
- URL: http://arxiv.org/abs/2506.23164v1
- Date: Sun, 29 Jun 2025 09:53:12 GMT
- Title: Mode Collapse Happens: Evaluating Critical Interactions in Joint Trajectory Prediction Models
- Authors: Maarten Hugenholtz, Anna Meszaros, Jens Kober, Zlatan Ajanovic,
- Abstract summary: We introduce metrics for mode collapse, mode correctness, and coverage, emphasizing the sequential dimension of predictions.<n>Our framework can help researchers gain new insights and advance the development of more consistent and accurate prediction models.
- Score: 2.9498907601878974
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Autonomous Vehicle decisions rely on multimodal prediction models that account for multiple route options and the inherent uncertainty in human behavior. However, models can suffer from mode collapse, where only the most likely mode is predicted, posing significant safety risks. While existing methods employ various strategies to generate diverse predictions, they often overlook the diversity in interaction modes among agents. Additionally, traditional metrics for evaluating prediction models are dataset-dependent and do not evaluate inter-agent interactions quantitatively. To our knowledge, none of the existing metrics explicitly evaluates mode collapse. In this paper, we propose a novel evaluation framework that assesses mode collapse in joint trajectory predictions, focusing on safety-critical interactions. We introduce metrics for mode collapse, mode correctness, and coverage, emphasizing the sequential dimension of predictions. By testing four multi-agent trajectory prediction models, we demonstrate that mode collapse indeed happens. When looking at the sequential dimension, although prediction accuracy improves closer to interaction events, there are still cases where the models are unable to predict the correct interaction mode, even just before the interaction mode becomes inevitable. We hope that our framework can help researchers gain new insights and advance the development of more consistent and accurate prediction models, thus enhancing the safety of autonomous driving systems.
Related papers
- From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving [4.795092023802721]
Marginal prediction models commonly forecast each agent's future trajectories independently.<n>Joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions.<n>We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency.
arXiv Detail & Related papers (2025-07-07T17:58:53Z) - MAP-Former: Multi-Agent-Pair Gaussian Joint Prediction [6.110153599741102]
There is a gap in risk assessment of trajectories between the trajectory information coming from a traffic motion prediction module and what is actually needed.
Existing prediction models yield joint predictions of agents' future trajectories with uncertainty weights or marginal Gaussian probability density functions (PDFs) for single agents.
This paper introduces a novel approach to motion prediction, focusing on predicting agent-pair covariance matrices in a scene-centric'' manner.
arXiv Detail & Related papers (2024-04-30T06:21:42Z) - Predictive Churn with the Set of Good Models [61.00058053669447]
This paper explores connections between two seemingly unrelated concepts of predictive inconsistency.<n>The first, known as predictive multiplicity, occurs when models that perform similarly produce conflicting predictions for individual samples.<n>The second concept, predictive churn, examines the differences in individual predictions before and after model updates.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Bridging the Gap Between Multi-Step and One-Shot Trajectory Prediction
via Self-Supervision [2.365702128814616]
Accurate vehicle trajectory prediction is an unsolved problem in autonomous driving.
We propose a middle-ground where multiple trajectory segments are chained together.
Our proposed Multi-Branch Self-Supervised Predictor receives additional training on new predictions starting at intermediate future segments.
arXiv Detail & Related papers (2023-06-06T02:46:28Z) - Benchmark for Models Predicting Human Behavior in Gap Acceptance
Scenarios [4.801975818473341]
We develop a framework facilitating the evaluation of any model, by any metric, and in any scenario.
We then apply this framework to state-of-the-art prediction models, which all show themselves to be unreliable in the most safety-critical situations.
arXiv Detail & Related papers (2022-11-10T09:59:38Z) - Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting [61.02295959343446]
This work first proposes a novel concept, collaborative uncertainty (CU), which models the uncertainty resulting from interaction modules.<n>We build a general CU-aware regression framework with an original permutation-equivariant uncertainty estimator to do both tasks of regression and uncertainty estimation.<n>We apply the proposed framework to current SOTA multi-agent trajectory forecasting systems as a plugin module.
arXiv Detail & Related papers (2022-07-11T21:17:41Z) - Predictive Multiplicity in Probabilistic Classification [25.111463701666864]
We present a framework for measuring predictive multiplicity in probabilistic classification.
We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks.
Our results emphasize the need to report predictive multiplicity more widely.
arXiv Detail & Related papers (2022-06-02T16:25:29Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Exploring Social Posterior Collapse in Variational Autoencoder for
Interaction Modeling [26.01824780050843]
Variational Autoencoder (VAE) has been widely applied in multi-agent interaction modeling.
VAE is prone to ignoring historical social context when predicting the future trajectory of an agent.
We propose a novel sparse graph attention message-passing layer, which helps us detect social posterior collapse.
arXiv Detail & Related papers (2021-12-01T06:20:58Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.