Improving Myocardial Infarction Detection via Synthetic ECG Pretraining
- URL: http://arxiv.org/abs/2506.23259v1
- Date: Sun, 29 Jun 2025 14:29:55 GMT
- Title: Improving Myocardial Infarction Detection via Synthetic ECG Pretraining
- Authors: Lachin Naghashyar,
- Abstract summary: Myocardial infarction is a major cause of death globally, and accurate early diagnosis from electrocardiograms (ECGs) remains a clinical priority.<n>Deep learning models have shown promise for automated ECG interpretation, but require large amounts of labeled data.<n>We propose a physiology-aware pipeline that synthesizes 12-lead ECGs with tunable MI morphology and realistic noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Myocardial infarction is a major cause of death globally, and accurate early diagnosis from electrocardiograms (ECGs) remains a clinical priority. Deep learning models have shown promise for automated ECG interpretation, but require large amounts of labeled data, which are often scarce in practice. We propose a physiology-aware pipeline that (i) synthesizes 12-lead ECGs with tunable MI morphology and realistic noise, and (ii) pre-trains recurrent and transformer classifiers with self-supervised masked-autoencoding plus a joint reconstruction-classification objective. We validate the realism of synthetic ECGs via statistical and visual analysis, confirming that key morphological features are preserved. Pretraining on synthetic data consistently improved classification performance, particularly in low-data settings, with AUC gains of up to 4 percentage points. These results show that controlled synthetic ECGs can help improve MI detection when real clinical data is limited.
Related papers
- Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation.<n> GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations.<n>We propose the Grounded ECG task, a clinically motivated benchmark designed to assess the MLLM's capability in grounded ECG understanding.
arXiv Detail & Related papers (2025-03-08T05:48:53Z) - FADE: Forecasting for Anomaly Detection on ECG [4.914228925573227]
The objective of this work is to propose a deep learning system, FADE, designed for normal ECG forecasting and anomaly detection.<n>FADE has been trained in a self-supervised manner with a novel morphological inspired loss function.<n>Using a novel distance function to compare forecasted ECG signals with actual sensor data, our method effectively identifies cardiac anomalies.
arXiv Detail & Related papers (2025-02-11T09:19:39Z) - DiffuSETS: 12-lead ECG Generation Conditioned on Clinical Text Reports and Patient-Specific Information [13.680337221159506]
Heart disease remains a significant threat to human health.<n>Scarcity of high-quality ECG data, driven by privacy concerns and limited medical resources, creates a pressing need for effective ECG signal generation.<n>We propose DiffuSETS, a novel framework capable of generating ECG signals with high semantic alignment and fidelity.
arXiv Detail & Related papers (2025-01-10T12:55:34Z) - Synthetic Time Series Data Generation for Healthcare Applications: A PCG Case Study [43.28613210217385]
We employ and compare three state-of-the-art generative models to generate PCG data.<n>Our results demonstrate that the generated PCG data closely resembles the original datasets.<n>In our future work, we plan to incorporate this method into a data augmentation pipeline to synthesize abnormal PCG signals with heart murmurs.
arXiv Detail & Related papers (2024-12-17T18:07:40Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Masked Transformer for Electrocardiogram Classification [7.229662895786343]
Masked Transformer for ECG classification (MTECG) is a simple yet effective method which significantly outperforms recent state-of-the-art algorithms in ECG classification.
We construct the Fuwai dataset comprising 220,251 ECG recordings with a broad range of diagnoses, annotated by medical experts.
arXiv Detail & Related papers (2023-08-31T09:21:23Z) - MedalCare-XL: 16,900 healthy and pathological 12 lead ECGs obtained
through electrophysiological simulations [0.12417791895581763]
Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface.
We generated a novel synthetic database comprising a total of 16,900 12 lead ECGs based on electrophysiological simulations equally distributed into healthy control and 7 pathology classes.
A comparison of extracted features between the virtual cohort and a publicly available clinical ECG database demonstrated that the synthetic signals represent clinical ECGs for healthy and pathological subpopulations with high fidelity.
arXiv Detail & Related papers (2022-11-29T07:46:39Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
We propose a physiologically-inspired data augmentation method to improve performance and increase the robustness of heart disease detection based on ECG signals.
We obtain augmented samples by perturbing the data distribution towards other classes along the geodesic in Wasserstein space.
Learning from 12-lead ECG signals, our model is able to distinguish five categories of cardiac conditions.
arXiv Detail & Related papers (2022-08-02T03:14:13Z) - Analysis of Digitalized ECG Signals Based on Artificial Intelligence and
Spectral Analysis Methods Specialized in ARVC [0.0]
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that appears between the second and forth decade of a patient's life.
The effective and punctual diagnosis of this disease based on Electrocardiograms (ECGs) could have a vital role in reducing premature cardiovascular mortality.
arXiv Detail & Related papers (2022-02-28T13:12:50Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.