論文の概要: Physics informed guided diffusion for accelerated multi-parametric MRI reconstruction
- arxiv url: http://arxiv.org/abs/2506.23311v1
- Date: Sun, 29 Jun 2025 16:00:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.823646
- Title: Physics informed guided diffusion for accelerated multi-parametric MRI reconstruction
- Title(参考訳): 高速マルチパラメトリックMRI再構成のための物理情報誘導拡散法
- Authors: Perla Mayo, Carolin M. Pirkl, Alin Achim, Bjoern Menze, Mohammad Golbabaee,
- Abstract要約: MRF-DiPhはマルチパラメトリック組織マッピングのための物理情報伝達拡散手法である。
生体内脳スキャンデータを用いた数値実験により、MRF-DiPhは深層学習と圧縮されたMRFベースラインより優れることが示された。
- 参考スコア(独自算出の注目度): 4.833916353245013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce MRF-DiPh, a novel physics informed denoising diffusion approach for multiparametric tissue mapping from highly accelerated, transient-state quantitative MRI acquisitions like Magnetic Resonance Fingerprinting (MRF). Our method is derived from a proximal splitting formulation, incorporating a pretrained denoising diffusion model as an effective image prior to regularize the MRF inverse problem. Further, during reconstruction it simultaneously enforces two key physical constraints: (1) k-space measurement consistency and (2) adherence to the Bloch response model. Numerical experiments on in-vivo brain scans data show that MRF-DiPh outperforms deep learning and compressed sensing MRF baselines, providing more accurate parameter maps while better preserving measurement fidelity and physical model consistency-critical for solving reliably inverse problems in medical imaging.
- Abstract(参考訳): MRF-DiPhは磁気共鳴フィンガープリント(MRF)のような超高速で過渡的な定量的MRI取得から多パラメータ組織マッピングのための新しい物理手法である。
本手法は, MRF逆問題の正則化に先立って, 事前学習した復調拡散モデルを有効画像として組み込んだ近似分割式から導出する。
さらに、再構築の際には、(1)k空間の測定一貫性と(2)ブロッホ応答モデルへの付着という2つの重要な物理的制約を同時に実施する。
生体内脳スキャンデータの数値実験により、MRF-DiPhは深層学習と圧縮されたセンシングのMRFベースラインより優れており、より正確なパラメータマップを提供するとともに、測定精度と物理モデルの整合性が向上し、医用画像における確実な逆問題解決に欠かせないことが示されている。
関連論文リスト
- Domain-conditioned and Temporal-guided Diffusion Modeling for Accelerated Dynamic MRI Reconstruction [5.116849432626762]
dDiMoフレームワークは、時間分解次元から時間情報を統合する。
提案手法は, 心的マルチコイルMRIとGolden-Radial-Angle-acquired multicoil free-acquired MRIの2種類のMRIデータを用いて検討した。
論文 参考訳(メタデータ) (2025-01-16T05:39:50Z) - Denoising Diffusion Probabilistic Models for Magnetic Resonance Fingerprinting [7.379135816468852]
MRF(Magnetic Resonance Fingerprinting)は、MRIの定量的手法である。
正確な再建を達成することは、特に高度に加速され、アンサンプされた買収において、依然として困難である。
MRF画像再構成のための条件拡散確率モデルを提案する。
論文 参考訳(メタデータ) (2024-10-29T21:38:54Z) - qMRI Diffuser: Quantitative T1 Mapping of the Brain using a Denoising Diffusion Probabilistic Model [1.1278063431495107]
定量的MRI(qMRI)は、組織特性に関連する客観的パラメータを提供することにより、重み付け画像よりも大きな利点を提供する。
深層学習に基づく手法は、一連の重み付き画像から定量的マップを推定する効果を実証している。
深部生成モデルを用いたqMRIの新しい手法であるqMRIディフューザを提案する。
論文 参考訳(メタデータ) (2024-07-23T13:49:19Z) - Phy-Diff: Physics-guided Hourglass Diffusion Model for Diffusion MRI Synthesis [45.074243735766]
本稿では,高画質のdMRIを生成する物理誘導拡散モデルを提案する。
本モデルは拡散過程におけるノイズ進化におけるdMRIの物理原理を紹介する。
実験の結果,本手法は他の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-05T07:09:19Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction [3.083408283778178]
本研究では,ネイティブデータ領域に条件付き拡散モデルに基づく画像再構成手法を提案する。
提案手法は,特に加速係数の高い画像の再構成において,有意義な可能性を証明している。
論文 参考訳(メタデータ) (2023-09-02T01:33:50Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。