VALID-Mol: a Systematic Framework for Validated LLM-Assisted Molecular Design
- URL: http://arxiv.org/abs/2506.23339v1
- Date: Sun, 29 Jun 2025 17:17:04 GMT
- Title: VALID-Mol: a Systematic Framework for Validated LLM-Assisted Molecular Design
- Authors: Malikussaid, Hilal Hudan Nuha,
- Abstract summary: We present VALID-Mol, a framework for integrating chemical validation with Large Language Models (LLMs)<n>Our approach combines methodical prompt engineering, automated chemical validation, and a fine-tuned domain-adapted LLM to ensure reliable generation of synthesizable molecules.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) demonstrate remarkable potential for scientific discovery, but their application in domains requiring factual accuracy and domain-specific constraints remains challenging. In molecular design for drug discovery, LLMs can suggest creative molecular modifications but often produce chemically invalid or impractical structures. We present VALID-Mol, a systematic framework for integrating chemical validation with LLM-driven molecular design that increases the rate of generating valid chemical structures from 3% to 83%. Our approach combines methodical prompt engineering, automated chemical validation, and a fine-tuned domain-adapted LLM to ensure reliable generation of synthesizable molecules with improved properties. Beyond the specific implementation, we contribute a generalizable methodology for scientifically-constrained LLM applications, with quantifiable reliability improvements. Computational predictions suggest our framework can generate promising candidates for synthesis with up to 17-fold computationally predicted improvements in target affinity while maintaining synthetic accessibility. We provide a detailed analysis of our prompt engineering process, validation architecture, and fine-tuning approach, offering a reproducible blueprint for applying LLMs to other scientific domains where domain-specific validation is essential.
Related papers
- ChemDFM-R: An Chemical Reasoner LLM Enhanced with Atomized Chemical Knowledge [14.6026550444088]
This work focuses on the specific field of chemistry and develop a Chemical Reasoner LLM, ChemDFM-R.<n>We first construct a comprehensive dataset of atomized knowledge points to enhance the model's understanding of the fundamental principles and logical structure of chemistry.<n> Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves cutting-edge performance while providing interpretable, rationale-driven outputs.
arXiv Detail & Related papers (2025-07-29T16:40:49Z) - Bridging the Plausibility-Validity Gap by Fine-Tuning a Reasoning-Enhanced LLM for Chemical Synthesis and Discovery [0.0]
Large Language Models often generate scientifically plausible but factually invalid information.<n>This paper presents a systematic methodology to bridge this gap by developing a specialized scientific assistant.
arXiv Detail & Related papers (2025-07-09T23:05:23Z) - ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data [53.78763789036172]
We present ChemActor, a fully fine-tuned large language model (LLM) as a chemical executor to convert between unstructured experimental procedures and structured action sequences.<n>This framework integrates a data selection module that selects data based on distribution divergence, with a general-purpose LLM, to generate machine-executable actions from a single molecule input.<n>Experiments on reaction-to-description (R2D) and description-to-action (D2A) tasks demonstrate that ChemActor achieves state-of-the-art performance, outperforming the baseline model by 10%.
arXiv Detail & Related papers (2025-06-30T05:11:19Z) - AutoChemSchematic AI: A Closed-Loop, Physics-Aware Agentic Framework for Auto-Generating Chemical Process and Instrumentation Diagrams [2.5875933818780363]
Current AI methods cannot auto-generate PFDs or PIDs, despite their critical role in scaling chemical processes.<n>We present a closed loop, aware physics framework for the automated generation of industrially viable PFDs and PIDs.
arXiv Detail & Related papers (2025-05-30T13:32:00Z) - Text-Guided Multi-Property Molecular Optimization with a Diffusion Language Model [20.250683535089617]
We propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM)<n>By fusing physically and chemically detailed semantics with specialized molecular representations, TransDLM effectively integrates diverse information sources to guide precise optimization.
arXiv Detail & Related papers (2024-10-17T14:30:27Z) - ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models [62.37850540570268]
Existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.
ChemEval identifies 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks.
Results show that while general LLMs excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge.
arXiv Detail & Related papers (2024-09-21T02:50:43Z) - Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning [0.0]
We introduce a Multi-Modal Fusion (MMF) framework that harnesses the analytical prowess of Graph Neural Networks (GNNs) and the linguistic generative and predictive abilities of Large Language Models (LLMs)
Our framework combines the effectiveness of GNNs in modeling graph-structured data with the zero-shot and few-shot learning capabilities of LLMs, enabling improved predictions while reducing the risk of overfitting.
arXiv Detail & Related papers (2024-08-27T11:10:39Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
Large Language Models (LLMs) have demonstrated great performance in few-shot In-Context Learning (ICL)
We develop a new semi-supervised learning method that overcomes the lack of experimental data available for many-shot ICL.
As we show, the new method greatly improves upon existing ICL methods for molecular design while being accessible and easy to use for scientists.
arXiv Detail & Related papers (2024-07-26T21:10:50Z) - Integrating Chemistry Knowledge in Large Language Models via Prompt Engineering [2.140221068402338]
This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models (LLMs) in scientific domains.
A benchmark dataset is curated to the intricate physical-chemical properties of small molecules, their drugability for pharmacology, alongside the functional attributes of enzymes and crystal materials.
The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics.
arXiv Detail & Related papers (2024-04-22T16:55:44Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
We propose QMO, a generic query-based molecule optimization framework.
QMO improves the desired properties of an input molecule based on efficient queries.
We show that QMO outperforms existing methods in the benchmark tasks of optimizing small organic molecules.
arXiv Detail & Related papers (2020-11-03T18:51:18Z) - Molecular Design in Synthetically Accessible Chemical Space via Deep
Reinforcement Learning [0.0]
We argue that existing generative methods are limited in their ability to favourably shift the distributions of molecular properties during optimization.
We propose a novel Reinforcement Learning framework for molecular design in which an agent learns to directly optimize through a space of synthetically-accessible drug-like molecules.
arXiv Detail & Related papers (2020-04-29T16:29:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.