Integrating Universal Generative AI Platforms in Educational Labs to Foster Critical Thinking and Digital Literacy
- URL: http://arxiv.org/abs/2507.00007v1
- Date: Wed, 11 Jun 2025 17:45:51 GMT
- Title: Integrating Universal Generative AI Platforms in Educational Labs to Foster Critical Thinking and Digital Literacy
- Authors: Vasiliy Znamenskiy, Rafael Niyazov, Joel Hernandez,
- Abstract summary: This paper presents a new educational framework for integrating generative artificial intelligence (GenAI) platforms into laboratory activities.<n> Recognizing the limitations and risks of uncritical reliance on large language models (LLMs), the proposed pedagogical model reframes GenAI as a research subject and cognitive tool.
- Score: 0.3749861135832073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a new educational framework for integrating generative artificial intelligence (GenAI) platforms such as ChatGPT, Claude, and Gemini into laboratory activities aimed at developing critical thinking and digital literacy among undergraduate students. Recognizing the limitations and risks of uncritical reliance on large language models (LLMs), the proposed pedagogical model reframes GenAI as a research subject and cognitive tool. Students formulate discipline-specific prompts and evaluate GenAI-generated responses in text, image, and video modalities. A pilot implementation in a general astronomy course for non-science majors demonstrated high levels of engagement and critical reflection, with many students continuing the activity after class and presenting results at a research symposium. The results highlight the importance of structured AI interactions in education and suggest that GenAI can improve learning outcomes when combined with reflective assessment methods. The study proposes a replicable model for interdisciplinary AI-integrated lab work, adaptable to scientific disciplines. See the guide to learning activities based on Generative-Ai platforms: https://doi.org/10.5281/zenodo.15555802
Related papers
- A Inteligência Artificial Generativa no Ecossistema Acadêmico: Uma Análise de Aplicações, Desafios e Oportunidades para a Pesquisa, o Ensino e a Divulgação Científica [0.0]
The rapid and disruptive integration of Generative Artificial Intelligence in higher education is reshaping fundamental academic practices.<n>Main challenges include threats to academic integrity, the risk of algorithmic bias, and the need for robust AI literacy.<n>The future of academia will not be defined by resistance to this technology, but by the ability of institutions and individuals to engage with it critically, ethically, and creatively.
arXiv Detail & Related papers (2025-07-03T18:23:18Z) - Encouraging Students' Responsible Use of GenAI in Software Engineering Education: A Causal Model and Two Institutional Applications [1.1511012020557325]
generative AI (GenAI) tools such as ChatGPT and GitHub Copilot become pervasive in education.<n>Concerns are rising about students using them to complete rather than learn from coursework.<n>This paper proposes and empirically applies a causal model to help educators scaffold responsible GenAI use in Software Engineering education.
arXiv Detail & Related papers (2025-05-31T19:27:40Z) - Machine Learning: a Lecture Note [51.31735291774885]
This lecture note is intended to prepare early-year master's and PhD students in data science or a related discipline with foundational ideas in machine learning.<n>It starts with basic ideas in modern machine learning with classification as a main target task.<n>Based on these basic ideas, the lecture note explores in depth the probablistic approach to unsupervised learning.
arXiv Detail & Related papers (2025-05-06T16:03:41Z) - Evaluating the AI-Lab Intervention: Impact on Student Perception and Use of Generative AI in Early Undergraduate Computer Science Courses [0.0]
Generative AI (GenAI) is rapidly entering computer science education.<n>Concerns about overreliance coexist with a gap in research on structured scaffolding to guide tool use in formal courses.<n>This study examines the impact of a dedicated "AI-Lab" intervention on undergraduate students.
arXiv Detail & Related papers (2025-04-30T18:12:42Z) - Generative AI in Education: Student Skills and Lecturer Roles [0.0]
This study aims to identify and evaluate the key competencies students need to effectively engage with GenAI in education.<n>The literature review identified 14 essential student skills for GenAI engagement, with AI literacy, critical thinking, and ethical AI practices emerging as the most critical.<n>In our study of lecturer strategies, we identified six key areas, with GenAI Integration and Curriculum Design being the most emphasised.
arXiv Detail & Related papers (2025-04-28T10:58:30Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.<n>We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.<n>We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - A Conceptual Exploration of Generative AI-Induced Cognitive Dissonance and its Emergence in University-Level Academic Writing [0.0]
This work explores how Generative Artificial Intelligence (GenAI) serves as both a trigger and amplifier of cognitive dissonance (CD)<n>We introduce a hypothetical construct of GenAI-induced CD, illustrating the tension between AI-driven efficiency and the principles of originality, effort, and intellectual ownership.<n>We discuss strategies to mitigate this dissonance, including reflective pedagogy, AI literacy programs, transparency in GenAI use, and discipline-specific task redesigns.
arXiv Detail & Related papers (2025-02-08T21:31:04Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.<n>Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Generative Physical AI in Vision: A Survey [78.07014292304373]
Gene Artificial Intelligence (AI) has rapidly advanced the field of computer vision by enabling machines to create and interpret visual data with unprecedented sophistication.<n>This transformation builds upon a foundation of generative models to produce realistic images, videos, and 3D/4D content.<n>As generative models evolve to increasingly integrate physical realism and dynamic simulation, their potential to function as "world simulators" expands.
arXiv Detail & Related papers (2025-01-19T03:19:47Z) - Generative Artificial Intelligence in Learning Analytics:
Contextualising Opportunities and Challenges through the Learning Analytics
Cycle [0.0]
Generative artificial intelligence (GenAI) holds significant potential for transforming education and enhancing human productivity.
This paper delves into the prospective opportunities and challenges GenAI poses for advancing learning analytics (LA)
We posit that GenAI can play pivotal roles in analysing unstructured data, generating synthetic learner data, enriching multimodal learner interactions, advancing interactive and explanatory analytics, and facilitating personalisation and adaptive interventions.
arXiv Detail & Related papers (2023-11-30T07:25:34Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.