Generalizing to New Dynamical Systems via Frequency Domain Adaptation
- URL: http://arxiv.org/abs/2507.00025v1
- Date: Tue, 17 Jun 2025 09:11:34 GMT
- Title: Generalizing to New Dynamical Systems via Frequency Domain Adaptation
- Authors: Tiexin Qin, Hong Yan, Haoliang Li,
- Abstract summary: We formulate a parameter-efficient method, Fourier Neural Simulator for Dynamical Adaptation (FNSDA), that can readily generalize to new dynamics.<n>FNSDA identifies the shareable dynamics based on the known environments using an automatic partition in Fourier modes.<n>We evaluate our approach on four representative families of dynamic systems, and the results show that FNSDA can achieve superior or competitive generalization performance.
- Score: 30.90481865743967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning the underlying dynamics from data with deep neural networks has shown remarkable potential in modeling various complex physical dynamics. However, current approaches are constrained in their ability to make reliable predictions in a specific domain and struggle with generalizing to unseen systems that are governed by the same general dynamics but differ in environmental characteristics. In this work, we formulate a parameter-efficient method, Fourier Neural Simulator for Dynamical Adaptation (FNSDA), that can readily generalize to new dynamics via adaptation in the Fourier space. Specifically, FNSDA identifies the shareable dynamics based on the known environments using an automatic partition in Fourier modes and learns to adjust the modes specific for each new environment by conditioning on low-dimensional latent systematic parameters for efficient generalization. We evaluate our approach on four representative families of dynamic systems, and the results show that FNSDA can achieve superior or competitive generalization performance compared to existing methods with a significantly reduced parameter cost. Our code is available at https://github.com/WonderSeven/FNSDA.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Beyond Static Models: Hypernetworks for Adaptive and Generalizable Forecasting in Complex Parametric Dynamical Systems [0.0]
We introduce the Parametric Hypernetwork for Learning Interpolated Networks (PHLieNet)<n>PHLieNet simultaneously learns a global mapping from the parameter space to a nonlinear embedding and a mapping from the inferred embedding to the weights of a dynamics propagation network.<n>By interpolating in the space of models rather than observations, PHLieNet facilitates smooth transitions across parameterized system behaviors.
arXiv Detail & Related papers (2025-06-24T13:22:49Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - SpReME: Sparse Regression for Multi-Environment Dynamic Systems [6.7053978622785415]
We develop a method of sparse regression dubbed SpReME to discover the major dynamics that underlie multiple environments.
We demonstrate that the proposed model captures the correct dynamics from multiple environments over four different dynamic systems with improved prediction performance.
arXiv Detail & Related papers (2023-02-12T15:45:50Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Generalizing to New Physical Systems via Context-Informed Dynamics Model [0.0]
We propose a new framework for context-informed dynamics adaptation (CoDA)
CoDA learns to condition the dynamics model on contextual parameters, specific to each environment.
We show state-ofthe-art generalization results on a set of nonlinear dynamics, representative of a variety of application domains.
arXiv Detail & Related papers (2022-02-01T07:41:10Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.