論文の概要: EfficientXLang: Towards Improving Token Efficiency Through Cross-Lingual Reasoning
- arxiv url: http://arxiv.org/abs/2507.00246v1
- Date: Mon, 30 Jun 2025 20:29:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:58.830066
- Title: EfficientXLang: Towards Improving Token Efficiency Through Cross-Lingual Reasoning
- Title(参考訳): EfficientXLang: 言語間推論によるトークン効率の向上を目指す
- Authors: Sanchit Ahuja, Praneetha Vaddamanu, Barun Patra,
- Abstract要約: 推論において最もトークン効率のよい言語が英語かどうかを考察する。
非英語言語における推論はトークンの使用量を減少させるだけでなく、正確性も維持する。
改善の程度は、多言語強度のモデルに依存する。
- 参考スコア(独自算出の注目度): 12.511775058257328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advances in Language Reasoning Models (LRMs), most research focuses solely on English, even though many models are pretrained on multilingual data. In this work, we investigate: Is English the most token-efficient language for reasoning? We evaluate three open-source RLMs: DeepSeek R1, Qwen 2.5 and Qwen 3, across four math datasets and seven typologically diverse languages. We find that reasoning in non-English languages not only reduces token usage, but also preserves accuracy. These gains persist even after translating the reasoning traces into English, suggesting genuine shifts in reasoning behavior rather than surface-level linguistic effects. The extent of improvement, however, depends on the models multilingual strength. Our findings motivate a broader view of reasoning in language models, highlighting the potential of multilingual reasoning and the importance of strong multilingual foundations. The code for our work can be found: https://github.com/microsoft/EfficientXLang.
- Abstract(参考訳): 近年のLanguage Reasoning Models (LRMs) の発展にもかかわらず、ほとんどの研究は英語にのみ焦点を絞っている。
英語は推論にとって最もトークン効率のよい言語か?
我々は,DeepSeek R1,Qwen 2.5,Qwen 3の3つのオープンソースのRLMを評価する。
非英語言語における推論はトークンの使用量を減少させるだけでなく、正確性も維持する。
これらの利得は、推論の痕跡を英語に翻訳した後でも持続し、表面レベルの言語効果よりも推論行動の真の変化を示唆している。
しかし、改善の程度は多言語強度のモデルに依存する。
本研究の目的は,多言語推論の可能性と,多言語基盤の重要性を明らかにすることにある。
私たちの仕事のコードは、 https://github.com/microsoft/EfficientXLang.comで見つけることができます。
関連論文リスト
- When Models Reason in Your Language: Controlling Thinking Trace Language Comes at the Cost of Accuracy [9.021965237274244]
思考トレースを持つLarge Reasoning Models (LRMs) は、英語の推論タスクに強いパフォーマンスを示している。
なぜなら、ユーザーは自分の言語で表現された場合にのみ、その推論トレースが監視に有用であることを見つけることができるからだ。
我々は、XReasoningベンチマークでLRMの2つの主要なファミリーを評価し、最も先進的なモデルでさえしばしば英語に戻るか、他の言語で断片化された推論を生成することを発見した。
論文 参考訳(メタデータ) (2025-05-28T21:44:12Z) - MMATH: A Multilingual Benchmark for Mathematical Reasoning [94.05289799605957]
MMATHは10言語にまたがる374の高品質な数学問題にまたがる多言語複雑推論のためのベンチマークである。
我々は、DeepSeek R1のような先進モデルでさえ、言語間での大幅な性能格差を示し、意図しない言語において重要な目標外問題発生応答に悩まされていることを観察する。
本研究は,大規模言語モデルの多言語推論能力向上のための新たな洞察と実践的戦略を提供する。
論文 参考訳(メタデータ) (2025-05-25T12:47:39Z) - Language Matters: How Do Multilingual Input and Reasoning Paths Affect Large Reasoning Models? [59.970391602080205]
多言語トレーニングにも拘わらず、LRMはテスト時に高リソース言語での推論をデフォルトとする傾向にある。
文化的推論は、推論タスクのパフォーマンスを低下させるが、文化的なタスクに恩恵を与える一方、安全性評価は言語固有の振る舞いを示す。
論文 参考訳(メタデータ) (2025-05-23T02:46:18Z) - Crosslingual Reasoning through Test-Time Scaling [51.55526326294275]
英語中心の推論言語モデル(RLM)に対する推論計算のスケールアップは、多くの言語における多言語数学的推論を改善する。
英語中心の RLM の CoT は自然に英語が主流であるが、引用された非英語入力を推論するための引用と思考のパターンは一貫して従っている。
我々は、ドメイン外推論の一般化、特にSTEMから文化常識の知識まで、英語においても、貧弱なドメイン外推論の一般化を観察する。
論文 参考訳(メタデータ) (2025-05-08T16:50:06Z) - Could Thinking Multilingually Empower LLM Reasoning? [41.62726542483646]
タスク推論における多言語化の上限について検討する。
多言語推論は、英語のみの推論よりも、かなり(約10Acc@$k$ポイント)、頑健に(翻訳品質と言語選択のバリエーションに耐性がある)高い上限を約束する。
論文 参考訳(メタデータ) (2025-04-16T07:45:10Z) - Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models [52.00446751692225]
textbfDictionary textbfInsertion textbfPrompting (textbfDIP) という,新規かつシンプルで効果的な方法を提案する。
非英語のプロンプトを提供する際、DIPは単語辞書を調べ、単語の英語のプロンプトをLLMのプロンプトに挿入する。
そして、英語へのより良い翻訳とより良い英語モデル思考のステップを可能にし、明らかにより良い結果をもたらす。
論文 参考訳(メタデータ) (2024-11-02T05:10:50Z) - Could We Have Had Better Multilingual LLMs If English Was Not the Central Language? [4.655168524016426]
大規模言語モデル(LLM)は、トレーニング対象の言語に対して強力な機械翻訳能力を示す。
我々の研究は、Llama2の翻訳能力について論じている。
実験の結果,7B Llama2モデルはこれまでに見たすべての言語に翻訳すると10 BLEU以上になることがわかった。
論文 参考訳(メタデータ) (2024-02-21T16:32:38Z) - Question Translation Training for Better Multilingual Reasoning [108.10066378240879]
大規模言語モデルは推論タスクにおいて魅力的なパフォーマンスを示すが、英語以外の言語ではより悪いパフォーマンスを示す傾向がある。
典型的な解決策は、命令データを興味のあるすべての言語に翻訳し、結果の多言語データをトレーニングすることである。
本稿では,X- English parallel question dataを微調整することで,推論する質問を英語に翻訳するモデルを訓練する。
論文 参考訳(メタデータ) (2024-01-15T16:39:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。