An Improved U-Net Model for Offline handwriting signature denoising
- URL: http://arxiv.org/abs/2507.00365v1
- Date: Tue, 01 Jul 2025 01:38:44 GMT
- Title: An Improved U-Net Model for Offline handwriting signature denoising
- Authors: Wanghui Xiao,
- Abstract summary: In forensic science appraisals, the analysis of offline handwriting signatures requires the appraiser to provide a certain number of signature samples.<n>The provided handwriting samples are often mixed with a large amount of interfering information, which brings severe challenges to handwriting identification work.<n>This study proposes a signature handwriting denoising model based on the improved U-net structure, aiming to enhance the robustness of the signature recognition system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Handwriting signatures, as an important means of identity recognition, are widely used in multiple fields such as financial transactions, commercial contracts and personal affairs due to their legal effect and uniqueness. In forensic science appraisals, the analysis of offline handwriting signatures requires the appraiser to provide a certain number of signature samples, which are usually derived from various historical contracts or archival materials. However, the provided handwriting samples are often mixed with a large amount of interfering information, which brings severe challenges to handwriting identification work. This study proposes a signature handwriting denoising model based on the improved U-net structure, aiming to enhance the robustness of the signature recognition system. By introducing discrete wavelet transform and PCA transform, the model's ability to suppress noise has been enhanced. The experimental results show that this modelis significantly superior to the traditional methods in denoising effect, can effectively improve the clarity and readability of the signed images, and provide more reliable technical support for signature analysis and recognition.
Related papers
- Privacy-Preserving Biometric Verification with Handwritten Random Digit String [49.77172854374479]
Handwriting verification has stood as a steadfast identity authentication method for decades.<n>However, this technique risks potential privacy breaches due to the inclusion of personal information in handwritten biometrics such as signatures.<n>We propose using the Random Digit String (RDS) for privacy-preserving handwriting verification.
arXiv Detail & Related papers (2025-03-17T03:47:25Z) - The NeRF Signature: Codebook-Aided Watermarking for Neural Radiance Fields [77.76790894639036]
We propose NeRF Signature, a novel watermarking method for NeRF.<n>We employ a Codebook-aided Signature Embedding (CSE) that does not alter the model structure.<n>We also introduce a joint pose-patch encryption watermarking strategy to hide signatures into patches.
arXiv Detail & Related papers (2025-02-26T13:27:49Z) - Offline Signature Verification Based on Feature Disentangling Aided Variational Autoencoder [6.128256936054622]
Main tasks of signature verification systems include extracting features from signature images and training a classifier for classification.
The instances of skilled forgeries are often unavailable, when signature verification models are being trained.
This paper proposes a new signature verification method using a variational autoencoder (VAE) to extract features directly from signature images.
arXiv Detail & Related papers (2024-09-29T19:54:47Z) - MS2SL: Multimodal Spoken Data-Driven Continuous Sign Language Production [93.32354378820648]
We propose a unified framework for continuous sign language production, easing communication between sign and non-sign language users.
A sequence diffusion model, utilizing embeddings extracted from text or speech, is crafted to generate sign predictions step by step.
Experiments on How2Sign and PHOENIX14T datasets demonstrate that our model achieves competitive performance in sign language production.
arXiv Detail & Related papers (2024-07-04T13:53:50Z) - Enhanced Bank Check Security: Introducing a Novel Dataset and Transformer-Based Approach for Detection and Verification [11.225067563482169]
We introduce a novel dataset specifically designed for signature verification on bank checks.
This dataset includes a variety of signature styles embedded within typical check elements.
We propose a novel approach for writer-independent signature verification using an object detection network.
arXiv Detail & Related papers (2024-06-20T14:42:14Z) - Revocable Quantum Digital Signatures [57.25067425963082]
We define and construct digital signatures with revocable signing keys from the LWE assumption.
In this primitive, the signing key is a quantum state which enables a user to sign many messages.
Once the key is successfully revoked, we require that the initial recipient of the key loses the ability to sign.
arXiv Detail & Related papers (2023-12-21T04:10:07Z) - Multiscale Feature Learning Using Co-Tuplet Loss for Offline Handwritten Signature Verification [0.0]
We introduce the MultiScale Signature feature learning Network (MS-SigNet) with the co-tuplet loss.
MS-SigNet learns both global and regional signature features from multiple spatial scales, enhancing feature discrimination.
We also present HanSig, a large-scale Chinese signature dataset to support robust system development for this language.
arXiv Detail & Related papers (2023-08-01T10:14:43Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - FedSOV: Federated Model Secure Ownership Verification with Unforgeable
Signature [60.99054146321459]
Federated learning allows multiple parties to collaborate in learning a global model without revealing private data.
We propose a cryptographic signature-based federated learning model ownership verification scheme named FedSOV.
arXiv Detail & Related papers (2023-05-10T12:10:02Z) - Augraphy: A Data Augmentation Library for Document Images [59.457999432618614]
Augraphy is a Python library for constructing data augmentation pipelines.
It provides strategies to produce augmented versions of clean document images that appear to have been altered by standard office operations.
arXiv Detail & Related papers (2022-08-30T22:36:19Z) - FCN+RL: A Fully Convolutional Network followed by Refinement Layers to
Offline Handwritten Signature Segmentation [3.3144312096837325]
We propose an approach to locate and extract the pixels of handwritten signatures on identification documents.
The technique is based on a fully convolutional encoder-decoder network combined with a block of refinement layers for the alpha channel of the predicted image.
arXiv Detail & Related papers (2020-05-28T18:47:10Z) - Offline Signature Verification on Real-World Documents [9.271640666465363]
Signatures extracted from formal documents may contain different types of occlusions, for example, stamps, company seals, ruling lines, and signature boxes.
In this paper, we address a real-world writer independent offline signature verification problem, in which, a bank's customers' transaction request documents that contain their occluded signatures are compared with their clean reference signatures.
Our proposed method consists of two main components, a stamp cleaning method based on CycleGAN and signature representation based on CNNs.
arXiv Detail & Related papers (2020-04-25T10:28:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.