Logarithmic Depth Decomposition of Approximate Multi-Controlled Single-Qubit Gates Without Ancilla Qubits
- URL: http://arxiv.org/abs/2507.00400v1
- Date: Tue, 01 Jul 2025 03:30:39 GMT
- Title: Logarithmic Depth Decomposition of Approximate Multi-Controlled Single-Qubit Gates Without Ancilla Qubits
- Authors: Jefferson D. S. Silva, Adenilton J. da Silva,
- Abstract summary: We present improved decompositions of multi-controlled NOT gates with logarithmic depth using a single ancilla qubit.<n>We also reduce the constant factors in the circuit depth compared to previous work.<n>Our method is particularly suitable for both NISQ and fault-tolerant quantum architectures.
- Score: 0.9576327614980397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The synthesis of quantum operators involves decomposing general quantum gates into the gate set supported by a given quantum device. Multi-controlled gates are essential components in this process. In this work, we present improved decompositions of multi-controlled NOT gates with logarithmic depth using a single ancilla qubit, while also reducing the constant factors in the circuit depth compared to previous work. We optimize a previously proposed decomposition of multi-target, multi-controlled special unitary SU(2) gates by identifying the presence of a conditionally clean qubit. Additionally, we introduce the best-known decomposition of multi-controlled approximate unitary U(2) gates without using ancilla qubits. This approach significantly reduces the overall circuit depth and CNOT count while preserving an adjustable error parameter, yielding a more efficient and scalable solution for synthesizing large controlled-unitary gates. Our method is particularly suitable for both NISQ and fault-tolerant quantum architectures. All software developed in this project is freely available.
Related papers
- Multi-Target Rydberg Gates via Spatial Blockade Engineering [47.582155477608445]
Multi-target gates offer the potential to reduce gate depth in syndrome extraction for quantum error correction.<n>We propose single-control-multi-target CZotimes N gates on a single-species neutral-atom platform.<n>We synthesise smooth control pulses for CZZ and CZZZ gates, achieving fidelities of up to 99.55% and 99.24%, respectively.
arXiv Detail & Related papers (2025-04-21T17:59:56Z) - Efficient compilation of quantum circuits using multi-qubit gates [0.0]
We present a compilation scheme which implements a general-circuit decomposition to a sequence of Ising-type, long-range, multi-qubit entangling gates.<n>We numerically test our compilation and show that, compared to conventional realizations with two-qubit gates, our compilations improves the logarithm of quantum volume by $20%$ to $25%$.
arXiv Detail & Related papers (2025-01-28T19:08:13Z) - Low-depth Quantum Circuit Decomposition of Multi-controlled Gates [0.8520624117635328]
Best decomposition of an n-controlled X gate with one borrowed ancilla produces circuits with degree 3 polylogarithmic depth.
A proposed n-controlled X gate with one borrowed ancilla has the shortest circuit depth in the literature.
One can reproduce all the results with the freely available open-source code provided in a public repository.
arXiv Detail & Related papers (2024-07-06T19:42:38Z) - Linear decomposition of approximate multi-controlled single qubit gates [0.8520624117635328]
We provide a method for compiling approximate multi-controlled single qubit gates into quantum circuits without ancilla qubits.
The total number of elementary gates to decompose an n-qubit multi-controlled gate is proportional to 32n.
arXiv Detail & Related papers (2023-10-23T14:23:08Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Decomposition of Multi-controlled Special Unitary Single-Qubit Gates [1.412197703754359]
Multi-controlled unitary gates have been a subject of interest in quantum computing since its inception.
Current state-of-the-art approach to implementing n-qubit multi-controlled gates involves the use of a quadratic number of single-qubit and CNOT gates.
We present a new decomposition of n-qubit multi-controlled SU(2) gates that requires a circuit with a number of CNOT gates proportional to 20n.
arXiv Detail & Related papers (2023-02-13T14:08:53Z) - Realization of Scalable Cirac-Zoller Multi-Qubit Gates [5.309268373861329]
The universality in quantum computing states that any quantum computational task can be decomposed into a finite set of logic gates operating on one and two qubits.
Practical processor designs benefit greatly from availability of multi-qubit gates that operate on more than two qubits.
Here, we take advantage of novel performance benefits of long ion chains to realize fully programmable and scalable high-fidelity Cirac-Zoller gates.
arXiv Detail & Related papers (2023-01-18T14:34:24Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.