論文の概要: Diversity Conscious Refined Random Forest
- arxiv url: http://arxiv.org/abs/2507.00467v1
- Date: Tue, 01 Jul 2025 06:28:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.427986
- Title: Diversity Conscious Refined Random Forest
- Title(参考訳): 多様性に配慮した照葉樹林
- Authors: Sijan Bhattarai, Saurav Bhandari, Girija Bhusal, Saroj Shakya, Tapendra Pandey,
- Abstract要約: ランダムフォレスト(Random Forest、RF)は、広く使われているアンサンブル学習技術である。
RFは何百本もの木と全ての入力機能に依存しており、高いコストとモデルの冗長性をもたらす。
本研究では,情報的特徴のみに木を生長させ,無関係な木を集成・維持することで最大多様性を発揮できる改良ランダムフォレストを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random Forest (RF) is a widely used ensemble learning technique known for its robust classification performance across diverse domains. However, it often relies on hundreds of trees and all input features, leading to high inference cost and model redundancy. In this work, our goal is to grow trees dynamically only on informative features and then enforce maximal diversity by clustering and retaining uncorrelated trees. Therefore, we propose a Refined Random Forest Classifier that iteratively refines itself by first removing the least informative features and then analytically determines how many new trees should be grown, followed by correlation-based clustering to remove redundant trees. The classification accuracy of our model was compared against the standard RF on the same number of trees. Experiments on 8 multiple benchmark datasets, including binary and multiclass datasets, demonstrate that the proposed model achieves improved accuracy compared to standard RF.
- Abstract(参考訳): ランダムフォレスト(Random Forest, RF)は、様々な領域にまたがる堅牢な分類性能で知られるアンサンブル学習技術である。
しかし、何百本もの木と全ての入力機能に依存しており、高い推論コストとモデルの冗長性をもたらす。
本研究の目的は,情報的特徴のみに木を動的に成長させ,無相関木をクラスタリングし,維持することにより,最大多様性を強制することである。
そこで,本研究では,まず最も情報に乏しい特徴を除去し,次に何本の新しい木を栽培すべきかを解析的に決定し,その後に冗長木を除去する相関クラスタリングを行った。
モデルの分類精度を,同じ木数での標準RFと比較した。
バイナリとマルチクラスのデータセットを含む8つのベンチマークデータセットの実験では、提案モデルが標準RFよりも精度が向上していることが示されている。
関連論文リスト
- Experiments with Optimal Model Trees [2.8391355909797644]
我々は,世界規模で最適なモデル木が,非常に小さな木と競合する精度を達成できることを示した。
また、古典的最適かつ優雅に成長した決定木、ランダムな森林、およびサポートベクターマシンと比較した。
論文 参考訳(メタデータ) (2025-03-17T08:03:47Z) - Binary Classification: Is Boosting stronger than Bagging? [5.877778007271621]
本稿では,バニラ・ランダム・フォレストの拡張である拡張ランダム・フォレストを紹介し,付加機能と適応サンプルおよびモデル重み付けについて述べる。
トレーニングサンプルの重み付けを適応するための反復アルゴリズムを開発し、最も難しい例を選好し、新しいサンプルごとに個別の木の重み付け手法を見つけるためのアプローチを開発した。
本手法は15の異なる二分分類データセットにまたがる通常のランダムフォレストを著しく改善し,XGBoostを含む他の木法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-24T23:22:33Z) - Heterogeneous Random Forest [2.0646127669654835]
不均一ランダムフォレスト(HRF)は、木多様性を有意義な方法で向上させるように設計されている。
HRFは、ほとんどのデータセットの精度において、他のアンサンブル手法よりも一貫して優れていた。
論文 参考訳(メタデータ) (2024-10-24T09:18:55Z) - Hierarchical Shrinkage: improving the accuracy and interpretability of
tree-based methods [10.289846887751079]
木構造を改変しないポストホックアルゴリズムである階層収縮(Hierarchical Shrinkage, HS)を導入する。
HSは、他の正規化技術と併用しても、決定木の予測性能を大幅に向上させる。
すべてのコードとモデルはGithubにある本格的なパッケージでリリースされている。
論文 参考訳(メタデータ) (2022-02-02T02:43:23Z) - To Boost or not to Boost: On the Limits of Boosted Neural Networks [67.67776094785363]
ブースティングは分類器のアンサンブルを学ぶ方法である。
ブースティングは決定木に非常に有効であることが示されているが、ニューラルネットワークへの影響は広く研究されていない。
単一のニューラルネットワークは通常、同じ数のパラメータを持つ小さなニューラルネットワークの強化されたアンサンブルよりもよく一般化される。
論文 参考訳(メタデータ) (2021-07-28T19:10:03Z) - Making CNNs Interpretable by Building Dynamic Sequential Decision
Forests with Top-down Hierarchy Learning [62.82046926149371]
本稿では,CNN(Convlutional Neural Networks)を解釈可能なモデル転送方式を提案する。
我々は、CNNの上に微分可能な意思決定林を構築することで、これを実現する。
DDSDF(Dep Dynamic Sequential Decision Forest)と命名する。
論文 参考訳(メタデータ) (2021-06-05T07:41:18Z) - Spectral Top-Down Recovery of Latent Tree Models [13.681975313065477]
スペクトルトップダウン・リカバリ (STDR) は、大きな潜在木モデルを推定するための分割・コンカレントアプローチである。
STDRの分割ステップは非ランダムです。
代わりに、観測されたノードに関連する適切なラプラシア行列のFiedlerベクトルに基づいている。
私達はSTDRが統計的に一貫性があることを証明し、高い確率で木を正確に回復するために必要なサンプルの数を縛ります。
論文 参考訳(メタデータ) (2021-02-26T02:47:42Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - An Efficient Adversarial Attack for Tree Ensembles [91.05779257472675]
傾斜促進決定木(DT)や無作為林(RF)などの木に基づくアンサンブルに対する敵対的攻撃
提案手法は,従来のMILP (Mixed-integer linear programming) よりも数千倍高速であることを示す。
私たちのコードはhttps://chong-z/tree-ensemble- attackで利用可能です。
論文 参考訳(メタデータ) (2020-10-22T10:59:49Z) - Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance
Segmentation [75.93960390191262]
我々は、オブジェクトカテゴリ間の関係に関する事前知識を利用して、きめ細かいクラスを粗い親クラスにクラスタリングする。
そこで本研究では,NMS再サンプリング法を提案する。
提案手法はフォレストR-CNNと呼ばれ,ほとんどのオブジェクト認識モデルに適用可能なプラグイン・アンド・プレイモジュールとして機能する。
論文 参考訳(メタデータ) (2020-08-13T03:52:37Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。