Residual Reward Models for Preference-based Reinforcement Learning
- URL: http://arxiv.org/abs/2507.00611v1
- Date: Tue, 01 Jul 2025 09:43:57 GMT
- Title: Residual Reward Models for Preference-based Reinforcement Learning
- Authors: Chenyang Cao, Miguel Rogel-GarcĂa, Mohamed Nabail, Xueqian Wang, Nicholas Rhinehart,
- Abstract summary: Preference-based Reinforcement Learning (PbRL) provides a way to learn high-performance policies in environments where the reward signal is hard to specify.<n>PbRL can suffer from slow convergence speed since it requires training in a reward model.<n>We propose a method to effectively leverage prior knowledge with a Residual Reward Model (RRM)
- Score: 11.797520525358564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Preference-based Reinforcement Learning (PbRL) provides a way to learn high-performance policies in environments where the reward signal is hard to specify, avoiding heuristic and time-consuming reward design. However, PbRL can suffer from slow convergence speed since it requires training in a reward model. Prior work has proposed learning a reward model from demonstrations and fine-tuning it using preferences. However, when the model is a neural network, using different loss functions for pre-training and fine-tuning can pose challenges to reliable optimization. In this paper, we propose a method to effectively leverage prior knowledge with a Residual Reward Model (RRM). An RRM assumes that the true reward of the environment can be split into a sum of two parts: a prior reward and a learned reward. The prior reward is a term available before training, for example, a user's ``best guess'' reward function, or a reward function learned from inverse reinforcement learning (IRL), and the learned reward is trained with preferences. We introduce state-based and image-based versions of RRM and evaluate them on several tasks in the Meta-World environment suite. Experimental results show that our method substantially improves the performance of a common PbRL method. Our method achieves performance improvements for a variety of different types of prior rewards, including proxy rewards, a reward obtained from IRL, and even a negated version of the proxy reward. We also conduct experiments with a Franka Panda to show that our method leads to superior performance on a real robot. It significantly accelerates policy learning for different tasks, achieving success in fewer steps than the baseline. The videos are presented at https://sunlighted.github.io/RRM-web/.
Related papers
- Reward Reasoning Model [104.39256985858428]
Reward Reasoning Models (RRMs) are designed to execute a deliberate reasoning process before generating final rewards.<n>We implement a reinforcement learning framework that fosters self-evolved reward reasoning capabilities.<n> Notably, RRMs can adaptively exploit test-time compute to further improve reward accuracy.
arXiv Detail & Related papers (2025-05-20T17:58:03Z) - Agentic Reward Modeling: Integrating Human Preferences with Verifiable Correctness Signals for Reliable Reward Systems [54.4392552373835]
Reward models (RMs) are crucial for the training and inference-time scaling up of large language models (LLMs)<n>We propose agentic reward modeling, a reward system that combines reward models with verifiable correctness signals to provide reliable rewards.<n>We conduct comprehensive experiments on existing reward model benchmarks and inference time best-of-n searches on real-world downstream tasks.
arXiv Detail & Related papers (2025-02-26T17:19:12Z) - R3HF: Reward Redistribution for Enhancing Reinforcement Learning from Human Feedback [25.27230140274847]
Reinforcement learning from human feedback (RLHF) provides a paradigm for aligning large language models (LLMs) with human preferences.
This paper proposes a novel reward redistribution method called R3HF, which facilitates a more fine-grained, token-level reward allocation.
arXiv Detail & Related papers (2024-11-13T02:45:21Z) - Bayesian Inverse Reinforcement Learning for Non-Markovian Rewards [7.2933135237680595]
Inverse reinforcement learning (IRL) is the problem of inferring a reward function from expert behavior.
A reward function might be non-Markovian, depending on more than just the current state, such as a reward machine (RM)
We propose a Bayesian IRL framework for inferring RMs directly from expert behavior, requiring significant changes to the standard framework.
arXiv Detail & Related papers (2024-06-20T04:41:54Z) - To the Max: Reinventing Reward in Reinforcement Learning [1.5498250598583487]
In reinforcement learning (RL), different reward functions can define the same optimal policy but result in drastically different learning performance.
We introduce textitmax-reward RL, where an agent optimize the maximum rather than the cumulative reward.
In experiments, we study the performance of max-reward RL algorithms in two goal-reaching environments from Gymnasium-Robotics.
arXiv Detail & Related papers (2024-02-02T12:29:18Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and human preferences can lead to catastrophic outcomes in the real world.<n>Recent methods aim to mitigate misalignment by learning reward functions from human preferences.<n>We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - DreamSmooth: Improving Model-based Reinforcement Learning via Reward
Smoothing [60.21269454707625]
DreamSmooth learns to predict a temporally-smoothed reward, instead of the exact reward at the given timestep.
We show that DreamSmooth achieves state-of-the-art performance on long-horizon sparse-reward tasks.
arXiv Detail & Related papers (2023-11-02T17:57:38Z) - Benchmarking Potential Based Rewards for Learning Humanoid Locomotion [10.406358397515838]
Well-designed shaping reward can lead to significantly faster learning.
In theory, the broad class of potential based reward shaping (PBRS) can help guide the learning process without affecting the optimal policy.
In this paper, we benchmark standard forms of shaping with PBRS for a humanoid robot.
arXiv Detail & Related papers (2023-07-19T17:12:28Z) - Distributional Reward Estimation for Effective Multi-Agent Deep
Reinforcement Learning [19.788336796981685]
We propose a novel Distributional Reward Estimation framework for effective Multi-Agent Reinforcement Learning (DRE-MARL)
Our main idea is to design the multi-action-branch reward estimation and policy-weighted reward aggregation for stabilized training.
The superiority of the DRE-MARL is demonstrated using benchmark multi-agent scenarios, compared with the SOTA baselines in terms of both effectiveness and robustness.
arXiv Detail & Related papers (2022-10-14T08:31:45Z) - Handling Sparse Rewards in Reinforcement Learning Using Model Predictive
Control [9.118706387430883]
Reinforcement learning (RL) has recently proven great success in various domains.
Yet, the design of the reward function requires detailed domain expertise and tedious fine-tuning to ensure that agents are able to learn the desired behaviour.
We propose to use model predictive control(MPC) as an experience source for training RL agents in sparse reward environments.
arXiv Detail & Related papers (2022-10-04T11:06:38Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - Learning to Utilize Shaping Rewards: A New Approach of Reward Shaping [71.214923471669]
Reward shaping is an effective technique for incorporating domain knowledge into reinforcement learning (RL)
In this paper, we consider the problem of adaptively utilizing a given shaping reward function.
Experiments in sparse-reward cartpole and MuJoCo environments show that our algorithms can fully exploit beneficial shaping rewards.
arXiv Detail & Related papers (2020-11-05T05:34:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.