Cognitive Load-Aware Inference: A Neuro-Symbolic Framework for Optimizing the Token Economy of Large Language Models
- URL: http://arxiv.org/abs/2507.00653v1
- Date: Tue, 01 Jul 2025 10:51:18 GMT
- Title: Cognitive Load-Aware Inference: A Neuro-Symbolic Framework for Optimizing the Token Economy of Large Language Models
- Authors: Yilun Zhang,
- Abstract summary: This paper introduces the Cognitive Load-Aware Inference (CLAI) framework, which operationalizes principles from Cognitive Load Theory (CLT) and neuroscience for Large Language Model (LLM) inference.<n>We formalize the concepts of Intrinsic Cognitive Load, Extraneous Cognitive Load, and Germane Cognitive Load into quantifiable LLM metrics.<n>We propose two implementation paths: CLAI-Prompt, a zero-shot method that guides a base LLM through cognitive control steps via a structured meta-prompt, and CLAI-Tune, a fine-tuned model that internalizes these principles for spontaneous cognitive economy.
- Score: 0.9790236766474201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The escalating computational costs of Large Language Model (LLM) inference have become a critical barrier to their widespread and sustainable deployment. While existing optimization strategies are effective, they are predominantly based on statistical heuristics or architectural modifications, lacking a guiding cognitive theory to manage the inference process itself. This paper aims to bridge this gap by introducing a novel paradigm: the Cognitive Load-Aware Inference (CLAI) framework, which operationalizes principles from Cognitive Load Theory (CLT) and neuroscience for LLM inference. We formalize the concepts of Intrinsic Cognitive Load, Extraneous Cognitive Load, and Germane Cognitive Load into quantifiable LLM metrics ($ICL_{LLM}$, $ECL_{LLM}$, and $GCL_{LLM}$), thereby reframing the inference process as a cognitive economics optimization problem: based on the intrinsic complexity of a problem ($ICL_{LLM}$), minimize wasteful computation ($ECL_{LLM}$), and strategically allocate the token budget to productive reasoning ($GCL_{LLM}$). We propose two implementation paths: CLAI-Prompt, a zero-shot method that guides a base LLM through cognitive control steps via a structured meta-prompt, and CLAI-Tune, a fine-tuned model that internalizes these principles for spontaneous cognitive economy. Across a range of benchmarks in complex reasoning, long-context question answering, and code generation, our methods achieve significant reductions in token consumption (up to 45\%) without sacrificing accuracy. Furthermore, CLAI-Tune exhibits an emergent ability to autonomously decompose difficult problems, a key characteristic of human expert cognition. This work demonstrates that by emulating the brain's resource management strategies, we can build more efficient, robust, and capable artificial intelligence systems.
Related papers
- A Theory of Inference Compute Scaling: Reasoning through Directed Stochastic Skill Search [15.387256204743407]
Large language models (LLMs) demand considerable computational, energy, and financial resources during both training and deployment.<n>Inference costs now represent a significant and growing component of the overall resource burden.<n>We introduce directed skill search (DS3), a general framework that represents inference as expressive over a learned skill graph.
arXiv Detail & Related papers (2025-06-10T14:47:48Z) - Chain of Methodologies: Scaling Test Time Computation without Training [77.85633949575046]
Large Language Models (LLMs) often struggle with complex reasoning tasks due to insufficient in-depth insights in their training data.<n>This paper introduces the Chain of the (CoM) framework that enhances structured thinking by integrating human methodological insights.
arXiv Detail & Related papers (2025-06-08T03:46:50Z) - Computational Thinking Reasoning in Large Language Models [69.28428524878885]
Computational Thinking Model (CTM) is a novel framework that incorporates computational thinking paradigms into large language models (LLMs)<n>Live code execution is seamlessly integrated into the reasoning process, allowing CTM to think by computing.<n>CTM outperforms conventional reasoning models and tool-augmented baselines in terms of accuracy, interpretability, and generalizability.
arXiv Detail & Related papers (2025-06-03T09:11:15Z) - A Survey of Slow Thinking-based Reasoning LLMs using Reinforced Learning and Inference-time Scaling Law [29.763080554625216]
This survey explores recent advancements in reasoning large language models (LLMs) designed to mimic "slow thinking"<n>LLMs focus on scaling computational resources dynamically during complex tasks, such as math reasoning, visual reasoning, medical diagnosis, and multi-agent debates.
arXiv Detail & Related papers (2025-05-05T14:14:59Z) - Computational Reasoning of Large Language Models [51.629694188014064]
We introduce textbfTuring Machine Bench, a benchmark to assess the ability of Large Language Models (LLMs) to execute reasoning processes.<n> TMBench incorporates four key features: self-contained and knowledge-agnostic reasoning, a minimalistic multi-step structure, controllable difficulty, and a theoretical foundation based on Turing machine.
arXiv Detail & Related papers (2025-04-29T13:52:47Z) - Beyond Words: A Latent Memory Approach to Internal Reasoning in LLMs [0.0]
We propose a framework that integrates implicit mental representations into the internal reasoning processes of large language models.<n>Preliminary experiments indicate that incorporating an Implicit Memory Module into a simple GPT model yields a reduction of between 35% and 57% in final training loss.
arXiv Detail & Related papers (2025-02-28T13:22:29Z) - To Code or not to Code? Adaptive Tool Integration for Math Language Models via Expectation-Maximization [30.057052324461534]
We propose a novel framework that synergizes structured exploration (E-step) with off-policy optimization (M-step) to create a self-reinforcing cycle between metacognitive tool-use decisions and evolving capabilities.<n>Our 7B model improves over 11% on MATH500 and 9.4% on AIME without o1-like CoT.
arXiv Detail & Related papers (2025-02-02T06:32:23Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - MR-GSM8K: A Meta-Reasoning Benchmark for Large Language Model Evaluation [60.65820977963331]
We introduce a novel evaluation paradigm for Large Language Models (LLMs)
This paradigm shifts the emphasis from result-oriented assessments, which often neglect the reasoning process, to a more comprehensive evaluation.
By applying this paradigm in the GSM8K dataset, we have developed the MR-GSM8K benchmark.
arXiv Detail & Related papers (2023-12-28T15:49:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.