論文の概要: PI-WAN: A Physics-Informed Wind-Adaptive Network for Quadrotor Dynamics Prediction in Unknown Environments
- arxiv url: http://arxiv.org/abs/2507.00816v1
- Date: Tue, 01 Jul 2025 14:48:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.67243
- Title: PI-WAN: A Physics-Informed Wind-Adaptive Network for Quadrotor Dynamics Prediction in Unknown Environments
- Title(参考訳): PI-WAN - 未知環境における四回転子ダイナミクス予測のための物理インフォームド・ウィンド適応ネットワーク
- Authors: Mengyun Wang, Bo Wang, Yifeng Niu, Chang Wang,
- Abstract要約: 本研究では, 物理インフォームド・ウィンド・アダプティブ・ネットワーク (PI-WAN) を導入する。
具体的には、PI-WANは時間的畳み込みネットワーク(TCN)アーキテクチャを採用し、歴史的飛行データから時間的依存関係を効率的にキャプチャする。
実時間予測結果をモデル予測制御(MPC)フレームワークに組み込むことで,クローズドループ追跡性能の向上を実現する。
- 参考スコア(独自算出の注目度): 3.4802474792943805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate dynamics modeling is essential for quadrotors to achieve precise trajectory tracking in various applications. Traditional physical knowledge-driven modeling methods face substantial limitations in unknown environments characterized by variable payloads, wind disturbances, and external perturbations. On the other hand, data-driven modeling methods suffer from poor generalization when handling out-of-distribution (OoD) data, restricting their effectiveness in unknown scenarios. To address these challenges, we introduce the Physics-Informed Wind-Adaptive Network (PI-WAN), which combines knowledge-driven and data-driven modeling methods by embedding physical constraints directly into the training process for robust quadrotor dynamics learning. Specifically, PI-WAN employs a Temporal Convolutional Network (TCN) architecture that efficiently captures temporal dependencies from historical flight data, while a physics-informed loss function applies physical principles to improve model generalization and robustness across previously unseen conditions. By incorporating real-time prediction results into a model predictive control (MPC) framework, we achieve improvements in closed-loop tracking performance. Comprehensive simulations and real-world flight experiments demonstrate that our approach outperforms baseline methods in terms of prediction accuracy, tracking precision, and robustness to unknown environments.
- Abstract(参考訳): 正確な動的モデリングは、様々なアプリケーションにおいて正確な軌道追跡を実現するために必要不可欠である。
従来の物理的知識駆動モデリング手法は、可変ペイロード、風の乱れ、外部の摂動を特徴とする未知の環境において、かなりの制限に直面している。
一方、データ駆動モデリング手法は、オフ・オブ・ディストリビューション(OoD)データを扱う場合、一般化の貧弱さに悩まされ、未知のシナリオでの有効性が制限される。
これらの課題に対処するために、我々は知識駆動型とデータ駆動型モデリング手法を組み合わせたPhysical-Informed Wind-Adaptive Network (PI-WAN)を導入する。
具体的には、PI-WANは時間的畳み込みネットワーク(TCN)アーキテクチャを採用し、歴史的飛行データから時間的依存関係を効率的に捕捉する一方、物理インフォームド損失関数は物理原理を適用して、それまで見つからなかった条件をまたいだモデル一般化と堅牢性を改善する。
実時間予測結果をモデル予測制御(MPC)フレームワークに組み込むことで,クローズドループ追跡性能の向上を実現する。
総合シミュレーションと実世界の飛行実験により, 予測精度, 追跡精度, 未知環境に対するロバスト性の観点から, 本手法がベースライン法より優れていることが示された。
関連論文リスト
- Dynamic Manipulation of Deformable Objects in 3D: Simulation, Benchmark and Learning Strategy [88.8665000676562]
従来の手法は、しばしば問題を低速または2D設定に単純化し、現実の3Dタスクに適用性を制限する。
データ不足を軽減するため、新しいシミュレーションフレームワークと、低次ダイナミクスに基づくベンチマークを導入する。
本研究では,シミュレーション前トレーニングと物理インフォームドテスト時間適応を統合するフレームワークであるDynamics Informed Diffusion Policy (DIDP)を提案する。
論文 参考訳(メタデータ) (2025-05-23T03:28:25Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
本研究では,高次元非定常力学系のスケーラブルかつ柔軟なモデリングのための効率的な変換ガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは、単一の共有GPと入力依存の正規化フローを統合し、複雑な非定常遷移ダイナミクスを捉える前に、表現的な暗黙のプロセスを生成する。
ETGPSSMは、計算効率と精度の観点から、既存のGPSSMとニューラルネットワークベースのSSMより優れています。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - FlowDAS: A Stochastic Interpolant-based Framework for Data Assimilation [15.64941169350615]
データ同化(DA)は、PDEが支配するシステムの状態を推定するために、動的モデルと観測を統合する。
FlowDASは、間補体を使用して状態遷移ダイナミクスを学習する生成DAフレームワークである。
本研究では,FlowDASがモデル駆動法,ニューラル演算子,スコアベースベースラインを超える精度と物理的妥当性を示す。
論文 参考訳(メタデータ) (2025-01-13T05:03:41Z) - Fine-Tuning Hybrid Physics-Informed Neural Networks for Vehicle Dynamics Model Estimation [2.432448600920501]
本稿では、教師付きおよび教師なしの物理インフォームドニューラルネットワーク(PINN)を統合したFTHD法を提案する。
FTHDは、より小さなトレーニングデータセットを使用して、事前トレーニングされたDeep Dynamics Model(DDM)を微調整する。
拡張カルマンフィルタ(EKF)はFTHD内に埋め込まれ、ノイズの多い実世界のデータを効果的に管理し、正確な騒音を確実にする。
その結果, パラメータ推定精度は従来のモデルより大幅に向上し, 既存のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-09-29T10:33:07Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。