A Scalable and Quantum-Accurate Foundation Model for Biomolecular Force Field via Linearly Tensorized Quadrangle Attention
- URL: http://arxiv.org/abs/2507.00884v1
- Date: Tue, 01 Jul 2025 15:52:39 GMT
- Title: A Scalable and Quantum-Accurate Foundation Model for Biomolecular Force Field via Linearly Tensorized Quadrangle Attention
- Authors: Qun Su, Kai Zhu, Qiaolin Gou, Jintu Zhang, Renling Hu, Yurong Li, Yongze Wang, Hui Zhang, Ziyi You, Linlong Jiang, Yu Kang, Jike Wang, Chang-Yu Hsieh, Tingjun Hou,
- Abstract summary: We present LiTEN, a novel AI-based force field framework for atomistic biomolecular simulations.<n>Building on LiTEN, LiTEN-FF is a robust AIFF foundation model, pre-trained on the nablaDFT dataset for broad chemical generalization.<n>LiTEN achieves state-of-the-art (SOTA) performance across most evaluation subsets of rMD17, MD22, and Chignolin, outperforming leading models such as MACE, NequIP, and EquiFormer.
- Score: 6.749581549330875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate atomistic biomolecular simulations are vital for disease mechanism understanding, drug discovery, and biomaterial design, but existing simulation methods exhibit significant limitations. Classical force fields are efficient but lack accuracy for transition states and fine conformational details critical in many chemical and biological processes. Quantum Mechanics (QM) methods are highly accurate but computationally infeasible for large-scale or long-time simulations. AI-based force fields (AIFFs) aim to achieve QM-level accuracy with efficiency but struggle to balance many-body modeling complexity, accuracy, and speed, often constrained by limited training data and insufficient validation for generalizability. To overcome these challenges, we introduce LiTEN, a novel equivariant neural network with Tensorized Quadrangle Attention (TQA). TQA efficiently models three- and four-body interactions with linear complexity by reparameterizing high-order tensor features via vector operations, avoiding costly spherical harmonics. Building on LiTEN, LiTEN-FF is a robust AIFF foundation model, pre-trained on the extensive nablaDFT dataset for broad chemical generalization and fine-tuned on SPICE for accurate solvated system simulations. LiTEN achieves state-of-the-art (SOTA) performance across most evaluation subsets of rMD17, MD22, and Chignolin, outperforming leading models such as MACE, NequIP, and EquiFormer. LiTEN-FF enables the most comprehensive suite of downstream biomolecular modeling tasks to date, including QM-level conformer searches, geometry optimization, and free energy surface construction, while offering 10x faster inference than MACE-OFF for large biomolecules (~1000 atoms). In summary, we present a physically grounded, highly efficient framework that advances complex biomolecular modeling, providing a versatile foundation for drug discovery and related applications.
Related papers
- Iterative Distillation for Reward-Guided Fine-Tuning of Diffusion Models in Biomolecular Design [53.93023688824764]
We address the problem of fine-tuning diffusion models for reward-guided generation in biomolecular design.<n>We propose an iterative distillation-based fine-tuning framework that enables diffusion models to optimize for arbitrary reward functions.<n>Our off-policy formulation, combined with KL divergence minimization, enhances training stability and sample efficiency compared to existing RL-based methods.
arXiv Detail & Related papers (2025-07-01T05:55:28Z) - Machine learning surrogate models of many-body dispersion interactions in polymer melts [40.83978401377059]
We introduce a machine learning surrogate model specifically designed to predict MBD forces in polymer melts.<n>Our model is based on a trimmed SchNet architecture that selectively retains the most relevant atomic connections.<n>Characterized by high computational efficiency, our surrogate model enables practical incorporation of MBD effects into large-scale molecular simulations.
arXiv Detail & Related papers (2025-03-19T12:15:35Z) - UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion [61.690978792873196]
Existing approaches rely on either autoregressive sequence models or diffusion models.<n>We propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models.<n>We validate the effectiveness of UniGenX on material and small molecule generation tasks.
arXiv Detail & Related papers (2025-03-09T16:43:07Z) - BoostMD: Accelerating molecular sampling by leveraging ML force field features from previous time-steps [3.8214695776749013]
BoostMD is a surrogate model architecture designed to accelerate molecular dynamics simulations.<n>Our experiments demonstrate that BoostMD achieves an eight-fold speedup compared to the reference model.<n>By combining efficient feature reuse with a streamlined architecture, BoostMD offers a robust solution for conducting large-scale, long-timescale molecular simulations.
arXiv Detail & Related papers (2024-12-21T20:52:36Z) - Data-Driven Parametrization of Molecular Mechanics Force Fields for Expansive Chemical Space Coverage [16.745564099126575]
We develop ByteFF, an Amber-compatible force field for drug-like molecules.
Our model predicts all bonded and non-bonded MM force field parameters for drug-like molecules simultaneously across a broad chemical space.
arXiv Detail & Related papers (2024-08-23T03:37:06Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
Reactive force fields based on physics or machine learning can be used to bridge the gap in time and length scales.
We introduce the Gaussian multi-pole (GMP) featurization scheme that utilizes physically-relevant multi-pole expansions of the electron density around atoms.
We demonstrate that GMP-based models can achieve chemical accuracy for the QM9 dataset, and their accuracy remains reasonable even when extrapolating to new elements.
arXiv Detail & Related papers (2021-02-04T03:11:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.