論文の概要: Can AI be Consentful?
- arxiv url: http://arxiv.org/abs/2507.01051v1
- Date: Fri, 27 Jun 2025 15:32:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.79889
- Title: Can AI be Consentful?
- Title(参考訳): AIは一貫性があるか?
- Authors: Giada Pistilli, Bruna Trevelin,
- Abstract要約: 生成型AIシステムは、同意を中心に構築された従来の法的および倫理的枠組みの課題を明らかにする。
この章では、従来の同意の概念が、データ保護とプライバシの権利に基礎を置いている一方で、個人データから生成されたAI生成コンテンツの影響にどう対処するかを考察する。
- 参考スコア(独自算出の注目度): 0.5278958184444331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evolution of generative AI systems exposes the challenges of traditional legal and ethical frameworks built around consent. This chapter examines how the conventional notion of consent, while fundamental to data protection and privacy rights, proves insufficient in addressing the implications of AI-generated content derived from personal data. Through legal and ethical analysis, we show that while individuals can consent to the initial use of their data for AI training, they cannot meaningfully consent to the numerous potential outputs their data might enable or the extent to which the output is used or distributed. We identify three fundamental challenges: the scope problem, the temporality problem, and the autonomy trap, which collectively create what we term a ''consent gap'' in AI systems and their surrounding ecosystem. We argue that current legal frameworks inadequately address these emerging challenges, particularly regarding individual autonomy, identity rights, and social responsibility, especially in cases where AI-generated content creates new forms of personal representation beyond the scope of the original consent. By examining how these consent limitations intersect with broader principles of responsible AI (including fairness, transparency, accountability, and autonomy) we demonstrate the need to evolve ethical and legal approaches to consent.
- Abstract(参考訳): 生成的AIシステムの進化は、同意を中心に構築された従来の法的および倫理的枠組みの課題を明らかにする。
この章では、従来の同意の概念が、データ保護とプライバシの権利に基礎を置いている一方で、個人データから生成されたAI生成コンテンツの影響にどう対処するかを考察する。
法的および倫理的分析を通じて、個人がAIトレーニングにデータの初期使用に同意できる一方で、データによって可能となる可能性のある可能性のある潜在的なアウトプットや、そのアウトプットの使用や配布の程度に意味のある同意はできないことを示す。
私たちは、スコープ問題、時間的問題、自律トラップという3つの基本的な課題を特定します。
現在の法的枠組みは、特に個人の自律性、アイデンティティの権利、社会的責任に関する、特にAIが生成したコンテンツが、元の同意の範囲を超えて新しい個人的表現を創出するケースにおいて、これらの新興課題に不適切な対処をする、と我々は主張する。
これらの同意制限が、責任あるAI(公正性、透明性、説明責任、自律性を含む)のより広範な原則とどのように交わるかを調べることで、同意に対する倫理的および法的アプローチを進化させる必要性を実証する。
関連論文リスト
- Ethical AI: Towards Defining a Collective Evaluation Framework [0.3413711585591077]
人工知能(AI)は医療、金融、自律システムといった分野を変えつつある。
しかし、その迅速な統合は、データ所有権、プライバシー、およびシステムバイアスに関する緊急の倫理的懸念を提起する。
本稿では,意味不明で解釈可能な単位のオントロジブロック上に構築されたモジュール型倫理的評価フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-30T21:10:47Z) - Artificial Intelligence in Government: Why People Feel They Lose Control [44.99833362998488]
行政における人工知能の利用は急速に拡大している。
AIはより効率と応答性を約束するが、政府機能への統合は公正性、透明性、説明責任に関する懸念を提起する。
この記事では、デリゲートの特別事例として、AI導入に関するプリンシパル・エージェント理論を適用します。
論文 参考訳(メタデータ) (2025-05-02T07:46:41Z) - Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
私は、責任と倫理的AIを促進する努力が、確立された文脈規範に対するこの軽視に必然的に貢献し、正当化することができると論じます。
私は、道徳的保護よりも道徳的革新のAI倫理における現在の狭い優先順位付けに疑問を呈する。
論文 参考訳(メタデータ) (2024-12-06T15:36:13Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Is the U.S. Legal System Ready for AI's Challenges to Human Values? [16.510834081597377]
本研究では,ジェネレーティブAIが人的価値にもたらす課題に対して,米国法がいかに効果的に対処するかを検討する。
基本的価値の保護に関する既存の法的枠組みにおける顕著なギャップと不確実性を明らかにする。
我々は、新たな脅威を認識し、業界関係者に積極的に監査可能なガイドラインを提供するよう進化する法的枠組みを提唱する。
論文 参考訳(メタデータ) (2023-08-30T09:19:06Z) - VerifAI: Verified Generative AI [22.14231506649365]
生成AIは大きな進歩を遂げているが、その正確性と信頼性に関する懸念は拡大を続けている。
本稿では,データ管理の観点から生成AIの出力を検証することが,生成AIの新たな課題であることを示す。
私たちのビジョンは、検証可能な生成AIの開発を促進し、より信頼性が高く責任あるAIの利用に貢献することです。
論文 参考訳(メタデータ) (2023-07-06T06:11:51Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
多くの現在のAIシステムは、認識不能な攻撃に脆弱で、表現不足なグループに偏り、ユーザのプライバシ保護が欠如していることが判明した。
このレビューでは、信頼できるAIシステムを構築するための包括的なガイドとして、AI実践者に提供したいと思っています。
信頼に値するAIに対する現在の断片化されたアプローチを統合するために、AIシステムのライフサイクル全体を考慮した体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T03:20:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。