論文の概要: A Data Science Approach to Calcutta High Court Judgments: An Efficient LLM and RAG-powered Framework for Summarization and Similar Cases Retrieval
- arxiv url: http://arxiv.org/abs/2507.01058v1
- Date: Sat, 28 Jun 2025 20:24:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.809019
- Title: A Data Science Approach to Calcutta High Court Judgments: An Efficient LLM and RAG-powered Framework for Summarization and Similar Cases Retrieval
- Title(参考訳): Calcutta High Court Judgments に対するデータサイエンスのアプローチ: 要約と類似事例検索のための効率的な LLM と RAG を利用したフレームワーク
- Authors: Puspendu Banerjee, Aritra Mazumdar, Wazib Ansar, Saptarsi Goswami, Amlan Chakrabarti,
- Abstract要約: 本研究は,Calcutta High Courtの判決を解析するための枠組みを提案する。
ペガサスモデルを微調整することにより、判例の要約において大幅な改善が達成される。
RAGベースのフレームワークは、ユーザクエリに応答して、同様のケースを効率的に検索し、徹底的な概要と要約を提供する。
- 参考スコア(独自算出の注目度): 2.359291431338925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The judiciary, as one of democracy's three pillars, is dealing with a rising amount of legal issues, needing careful use of judicial resources. This research presents a complex framework that leverages Data Science methodologies, notably Large Language Models (LLM) and Retrieval-Augmented Generation (RAG) techniques, to improve the efficiency of analyzing Calcutta High Court verdicts. Our framework focuses on two key aspects: first, the creation of a robust summarization mechanism that distills complex legal texts into concise and coherent summaries; and second, the development of an intelligent system for retrieving similar cases, which will assist legal professionals in research and decision making. By fine-tuning the Pegasus model using case head note summaries, we achieve significant improvements in the summarization of legal cases. Our two-step summarizing technique preserves crucial legal contexts, allowing for the production of a comprehensive vector database for RAG. The RAG-powered framework efficiently retrieves similar cases in response to user queries, offering thorough overviews and summaries. This technique not only improves legal research efficiency, but it also helps legal professionals and students easily acquire and grasp key legal information, benefiting the overall legal scenario.
- Abstract(参考訳): 司法は民主主義の3つの柱の1つであり、司法資源を慎重に活用する必要のある法的な問題に対処している。
本研究では,特にLarge Language Models (LLM) とRetrieval-Augmented Generation (RAG) 技術を利用して,Calcutta High Court verdictsの分析効率を向上させる複雑なフレームワークを提案する。
第1に,複雑な法律文を簡潔かつ一貫性のある要約に蒸留する堅牢な要約機構の構築,第2に,類似事例を検索するインテリジェントシステムの開発,研究・意思決定における法的専門家の支援,という2つの重要な側面に焦点をあてる。
ケースヘッドの要約を用いてペガサスモデルを微調整することにより、判例の要約において大幅な改善が達成される。
我々の2段階の要約技術は重要な法的文脈を保ち、RAGのための包括的ベクトルデータベースを作成できる。
RAGベースのフレームワークは、ユーザクエリに応答して、同様のケースを効率的に検索し、徹底的な概要と要約を提供する。
この技術は、法律研究の効率を向上するだけでなく、法律専門家や学生が重要な法的情報を容易に取得して把握し、全体的な法的シナリオの恩恵を受けるのに役立つ。
関連論文リスト
- ASP2LJ : An Adversarial Self-Play Laywer Augmented Legal Judgment Framework [21.003203706712643]
法的判断予測 (LJP) は、関連する法的費用、条件、罰金を含む司法結果を予測することを目的としている。
現在のデータセットは、真正ケースから派生したもので、高い人間のアノテーションコストと不均衡な分布に悩まされている。
本稿では, ASP2LJ という法定法定法定フレームワークを提案する。
我々の枠組みは、裁判官が進化した弁護士の議論を参照することを可能にし、司法決定の客観性、公正性、合理性を改善する。
論文 参考訳(メタデータ) (2025-06-11T06:55:40Z) - A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences [76.73731245899454]
本稿では,階層的なファクトラム,証拠,暗黙的な経験に富む透明な法理推論スキーマを提案する。
このスキーマにインスパイアされた課題は、テキストのケース記述を取り込み、最終決定を正当化する階層構造を出力する。
このベンチマークは、Intelligent Courtにおける透明で説明可能なAI支援法推論の道を開く」。
論文 参考訳(メタデータ) (2025-03-02T10:26:54Z) - AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLawは、アメリカ合衆国控訴裁判所の無視事件を慎重に注釈付けした471のデータセットである。
我々のデータセットは、より人間らしく説明可能な法的な判断予測モデルの基礎となる。
その結果、LJPは依然として厳しい課題であり、法的な前例の適用は特に困難であることが示されている。
論文 参考訳(メタデータ) (2025-02-28T19:14:48Z) - JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
本稿では,文書関連性を評価する際に,人間の認知過程をエミュレートする新しいエージェント・リランカであるJiceRankを紹介する。
我々は,推論集約型BRIGHTベンチマークを用いて判定Rankを評価し,第1段階の検索手法よりも性能が大幅に向上したことを示す。
さらに、JiceRankは、人気の高いBEIRベンチマークの細調整された最先端リランカと同等に動作し、ゼロショットの一般化能力を検証している。
論文 参考訳(メタデータ) (2024-10-31T18:43:12Z) - LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
論文 参考訳(メタデータ) (2024-07-27T21:51:30Z) - Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation [22.85652668826498]
本稿では,大言語モデル(LLM)に基づく法的な知識誘導型事例修正手法であるKELLERを紹介する。
犯罪や法律記事に関する専門的な法的知識を取り入れることで、大規模な言語モデルにより、原訴訟を犯罪の簡潔なサブファクトに正確に修正することができる。
論文 参考訳(メタデータ) (2024-06-28T08:59:45Z) - CLERC: A Dataset for Legal Case Retrieval and Retrieval-Augmented Analysis Generation [44.67578050648625]
我々は、大規模なオープンソース法定コーパスを、情報検索(IR)と検索拡張生成(RAG)をサポートするデータセットに変換する。
このデータセットCLERCは、(1)法的な分析のための対応する引用を見つけ、(2)これらの引用のテキストを、推論目標を支持するコジェント分析にコンパイルする能力に基づいて、モデルのトレーニングと評価のために構築される。
論文 参考訳(メタデータ) (2024-06-24T23:57:57Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。