Self-Guided Process Reward Optimization with Redefined Step-wise Advantage for Process Reinforcement Learning
- URL: http://arxiv.org/abs/2507.01551v2
- Date: Thu, 03 Jul 2025 10:33:08 GMT
- Title: Self-Guided Process Reward Optimization with Redefined Step-wise Advantage for Process Reinforcement Learning
- Authors: Wu Fei, Hao Kong, Shuxian Liang, Yang Lin, Yibo Yang, Jing Tang, Lei Chen, Xiansheng Hua,
- Abstract summary: We present textbfSPRO, a novel framework that enables process-aware RL through two key innovations.<n>SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5% test accuracy improvement.<n> Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
- Score: 48.426139299991604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
Related papers
- Posterior-GRPO: Rewarding Reasoning Processes in Code Generation [7.893963076886232]
Reinforcement learning has significantly advanced code generation for large language models.<n>Current paradigms rely on outcome-based rewards from test cases, neglecting the quality of the intermediate reasoning process.<n>We introduce a unified framework that can effectively incorporate the quality of the reasoning process during RL.
arXiv Detail & Related papers (2025-08-07T09:04:10Z) - Truncated Proximal Policy Optimization [43.965892659920364]
Truncated Proximal Policy Optimization (T-PPO) improves training efficiency by streamlining policy update and length-restricted response generation.<n>We propose Extended Generalized Advantage Estimation (EGAE) for advantage estimation derived from incomplete responses.<n>We demonstrate the effectiveness and efficacy of T-PPO on AIME 2024 with a 32B base model.
arXiv Detail & Related papers (2025-06-18T01:21:38Z) - TreeRPO: Tree Relative Policy Optimization [55.97385410074841]
name is a novel method that estimates the mathematical expectations of rewards at various reasoning steps using tree sampling.<n>Building on the group-relative reward training mechanism of GRPO, name innovatively computes rewards based on step-level groups generated during tree sampling.
arXiv Detail & Related papers (2025-06-05T15:56:38Z) - Rewarding the Unlikely: Lifting GRPO Beyond Distribution Sharpening [36.81125165911328]
Reinforcement learning is emerging as a primary driver for improving language model reasoning capabilities.<n>We investigate whether current reinforcement learning algorithms merely sharpen the base model's distribution around problems it can already solve.<n>We show that unlikeliness reward mitigates rank bias and improves pass@$N$ across a large range of $N$ in both synthetic and real theorem proving settings.
arXiv Detail & Related papers (2025-06-03T01:15:15Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
We propose a novel two-stage policy optimization framework that directly approximates the optimal advantage function.<n>$A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks.<n>It reduces training time by up to 2$times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL.
arXiv Detail & Related papers (2025-05-27T03:58:50Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce [68.99924691391048]
We revisit GRPO from a reinforce-like algorithm perspective and analyze its core components.<n>We find that a simple rejection sampling baseline, RAFT, yields competitive performance than GRPO and PPO.<n>Motivated by this insight, we propose Reinforce-Rej, a minimal extension of policy gradient that filters both entirely incorrect and entirely correct samples.
arXiv Detail & Related papers (2025-04-15T16:15:02Z) - Entropy-Regularized Process Reward Model [30.279394036823092]
Large language models (LLMs) have shown promise in performing complex multi-step reasoning, yet they continue to struggle with mathematical reasoning.<n>We propose an entropy-regularized process reward model (ER-PRM) that integrates KL-regularized Markov Decision Processes (MDP)<n>Our empirical experiments on the MATH and GSM8K benchmarks demonstrate that ER-PRM consistently outperforms existing process reward models.
arXiv Detail & Related papers (2024-12-15T01:09:23Z) - Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning [90.23629291067763]
A promising approach for improving reasoning in large language models is to use process reward models (PRMs)
PRMs provide feedback at each step of a multi-step reasoning trace, potentially improving credit assignment over outcome reward models (ORMs)
To improve a base policy by running search against a PRM or using it as dense rewards for reinforcement learning (RL), we ask: "How should we design process rewards?"
We theoretically characterize the set of good provers and our results show that optimizing process rewards from such provers improves exploration during test-time search and online RL.
arXiv Detail & Related papers (2024-10-10T17:31:23Z) - DPO Meets PPO: Reinforced Token Optimization for RLHF [35.638723885233475]
We introduce an algorithm that learns the token-wise reward function from preference data and performs policy optimization based on this learned token-wise reward signal.<n>Experiments demonstrate that textttRTO performs better than PPO and other direct preference learning algorithms.
arXiv Detail & Related papers (2024-04-29T17:58:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.