SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
- URL: http://arxiv.org/abs/2507.01939v2
- Date: Wed, 23 Jul 2025 17:47:04 GMT
- Title: SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
- Authors: Xiaosheng Zhao, Yang Huang, Guirong Xue, Xiao Kong, Jifeng Liu, Xiaoyu Tang, Timothy C. Beers, Yuan-Sen Ting, A-Li Luo,
- Abstract summary: We present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis.<n>By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications.<n>We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar- parameter estimation and chemical-abundance determination.
- Score: 1.4217538206528657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
Related papers
- SpectrumFM: A New Paradigm for Spectrum Cognition [65.65474629224558]
We propose a spectrum foundation model, termed SpectrumFM, which provides a new paradigm for spectrum cognition.<n>An innovative spectrum encoder that exploits the convolutional neural networks is proposed to effectively capture both fine-grained local signal structures and high-level global dependencies in the spectrum data.<n>Two novel self-supervised learning tasks, namely masked reconstruction and next-slot signal prediction, are developed for pre-training SpectrumFM, enabling the model to learn rich and transferable representations.
arXiv Detail & Related papers (2025-08-02T14:40:50Z) - DiffSpectra: Molecular Structure Elucidation from Spectra using Diffusion Models [66.41802970528133]
Molecular structure elucidation from spectra is a foundational problem in chemistry.<n>Traditional methods rely heavily on expert interpretation and lack scalability.<n>We present DiffSpectra, a generative framework that directly infers both 2D and 3D molecular structures from multi-modal spectral data.
arXiv Detail & Related papers (2025-07-09T13:57:20Z) - Spectra-to-Structure and Structure-to-Spectra Inference Across the Periodic Table [60.78615287040791]
XAStruct is a learning framework capable of both predicting XAS spectra from crystal structures and inferring local structural descriptors from XAS input.<n>XAStruct is trained on a large-scale dataset spanning over 70 elements across the periodic table.
arXiv Detail & Related papers (2025-06-13T15:58:05Z) - Temporal-Spectral-Spatial Unified Remote Sensing Dense Prediction [62.376936772702905]
Current deep learning architectures for remote sensing are fundamentally rigid.<n>We introduce the Spatial-Temporal-Spectral Unified Network (STSUN) for unified modeling.<n> STSUN can adapt to input and output data with arbitrary spatial sizes, temporal lengths, and spectral bands.<n>It unifies disparate dense prediction tasks within a single architecture by conditioning the model on trainable task embeddings.
arXiv Detail & Related papers (2025-05-18T07:39:17Z) - Foundation model for mass spectrometry proteomics [22.385489678681907]
We propose unifying various spectrum prediction tasks under a single foundation model for mass spectra.<n>We show that using these pre-trained spectrum representations improves our performance on the four downstream tasks.
arXiv Detail & Related papers (2025-05-16T04:40:07Z) - CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.<n> variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.<n>We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - Optimizing Speech Multi-View Feature Fusion through Conditional Computation [51.23624575321469]
Self-supervised learning (SSL) features provide lightweight and versatile multi-view speech representations.<n> SSL features conflict with traditional spectral features like FBanks in terms of update directions.<n>We propose a novel generalized feature fusion framework grounded in conditional computation.
arXiv Detail & Related papers (2025-01-14T12:12:06Z) - Stellar parameter prediction and spectral simulation using machine learning [0.0]
We applied machine learning to the entire data history of ESO's High Accuracy Radial Velocity Planet Searcher (HARPS) instrument.<n>We trained standard and variational autoencoders on HARPS data to predict spectral parameters and generate spectra.<n>Our models excel at predicting spectral parameters and compressing real spectra, and they achieved a mean prediction error of approximately 50 K for effective temperatures.
arXiv Detail & Related papers (2024-12-12T07:09:42Z) - Stellar Spectra Fitting with Amortized Neural Posterior Estimation and
nbi [0.0]
We train an ANPE model for the APOGEE survey and demonstrate its efficacy on both mock and real stellar spectra.
We introduce an effective approach to handling the measurement noise properties inherent in spectral data.
We discuss the utility of an ANPE "model zoo," where models are trained for specific instruments and distributed under the nbi framework.
arXiv Detail & Related papers (2023-12-09T21:30:07Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - deep-REMAP: Parameterization of Stellar Spectra Using Regularized
Multi-Task Learning [0.0]
Deep-Regularized Ensemble-based Multi-task Learning with Asymmetric Loss for Probabilistic Inference ($rmdeep-REMAP$)
We develop a novel framework that utilizes the rich synthetic spectra from the PHOENIX library and observational data from the MARVELS survey to accurately predict stellar atmospheric parameters.
arXiv Detail & Related papers (2023-11-07T05:41:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.