Scaling Quantum Algorithms via Dissipation: Avoiding Barren Plateaus
- URL: http://arxiv.org/abs/2507.02043v2
- Date: Mon, 21 Jul 2025 09:11:41 GMT
- Title: Scaling Quantum Algorithms via Dissipation: Avoiding Barren Plateaus
- Authors: Elias Zapusek, Ivan Rojkov, Florentin Reiter,
- Abstract summary: Variational quantum algorithms (VQAs) have enabled a wide range of applications on near-term quantum devices.<n>Dissipative quantum algorithms that leverage nonunitary dynamics offer a complementary framework with remarkable robustness to noise.<n>We demonstrate that dissipative quantum algorithms based on non-unital channels can avoid both unitary and noise-induced barren plateaus.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms (VQAs) have enabled a wide range of applications on near-term quantum devices. However, their scalability is fundamentally limited by barren plateaus, where the probability of encountering large gradients vanishes exponentially with system size. In addition, noise induces barren plateaus, deterministically flattening the cost landscape. Dissipative quantum algorithms that leverage nonunitary dynamics to prepare quantum states via engineered cooling offer a complementary framework with remarkable robustness to noise. We demonstrate that dissipative quantum algorithms based on non-unital channels can avoid both unitary and noise-induced barren plateaus. Periodically resetting ancillary qubits actively extracts entropy from the system, maintaining gradient magnitudes and enabling scalable optimization. We provide analytic conditions ensuring they remain trainable even in the presence of noise. Numerical simulations confirm our predictions and illustrate scenarios where unitary algorithms fail but dissipative algorithms succeed. Our framework positions dissipative quantum algorithms as a scalable, noise-resilient alternative to traditional VQAs.
Related papers
- Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Dissipative variational quantum algorithms for Gibbs state preparation [0.0]
We introduce dissipative variational quantum algorithms (D-VQAs) by incorporating dissipative operations, such as qubit RESET and gates, as an intrinsic part of a variational quantum circuit.<n>We demonstrate how such algorithms can prepare Gibbs states over a wide range of quantum many-body Hamiltonians and temperatures, while significantly reducing errors due to both coherent and non-coherent noise.
arXiv Detail & Related papers (2024-07-12T18:48:46Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Laziness, Barren Plateau, and Noise in Machine Learning [10.058827198658252]
We discuss the difference between laziness and emphbarren plateau in quantum machine learning.
We show that variational quantum algorithms are noise-resilient in the overparametrization regime.
arXiv Detail & Related papers (2022-06-19T02:58:14Z) - Mitigating Noise-Induced Gradient Vanishing in Variational Quantum
Algorithm Training [14.343891429004639]
Variational quantum algorithms are expected to demonstrate the advantage of quantum computing on noisy quantum computers.
Training such variational quantum algorithms suffers from gradient vanishing as the size of the algorithm increases.
We propose a novel training scheme to mitigate such noise-induced gradient vanishing.
arXiv Detail & Related papers (2021-11-25T18:28:34Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Noise-Induced Barren Plateaus in Variational Quantum Algorithms [0.3562485774739681]
Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers.
We rigorously prove a serious limitation for noisy VQAs, in that the noise causes the training landscape to have a barren plateau.
arXiv Detail & Related papers (2020-07-28T17:52:21Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.