論文の概要: Adaptive Iterative Soft-Thresholding Algorithm with the Median Absolute Deviation
- arxiv url: http://arxiv.org/abs/2507.02084v1
- Date: Wed, 02 Jul 2025 18:41:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:15.086395
- Title: Adaptive Iterative Soft-Thresholding Algorithm with the Median Absolute Deviation
- Title(参考訳): 媒質絶対偏差を考慮した適応的反復型ソフトスレッショルドアルゴリズム
- Authors: Yining Feng, Ivan Selesnick,
- Abstract要約: 本稿では, 適応ISTAに関する理論的解析を行い, 絶対偏差の中央値による雑音レベル推定のしきい値化戦略について述べる。
アルゴリズムの定点(スケール等分散、非特異性、局所安定性など)の特性を示し、局所収束保証を証明し、その大域収束挙動を示す。
- 参考スコア(独自算出の注目度): 1.8722948221596285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The adaptive Iterative Soft-Thresholding Algorithm (ISTA) has been a popular algorithm for finding a desirable solution to the LASSO problem without explicitly tuning the regularization parameter $\lambda$. Despite that the adaptive ISTA is a successful practical algorithm, few theoretical results exist. In this paper, we present the theoretical analysis on the adaptive ISTA with the thresholding strategy of estimating noise level by median absolute deviation. We show properties of the fixed points of the algorithm, including scale equivariance, non-uniqueness, and local stability, prove the local linear convergence guarantee, and show its global convergence behavior.
- Abstract(参考訳): 適応型反復型Soft-Thresholding Algorithm (ISTA) は、正規化パラメータ$\lambda$を明示的に調整することなくLASSO問題に対する望ましい解を求めるアルゴリズムとして人気がある。
適応ISTAは実用的なアルゴリズムとして成功しているが、理論的な結果はほとんどない。
本稿では,アダプティブISTAに関する理論的解析と,中央値の絶対偏差による雑音レベル推定のしきい値化戦略について述べる。
アルゴリズムの定点(スケール等分散、非特異性、局所安定性など)の特性を示し、局所収束保証を証明し、その大域収束挙動を示す。
関連論文リスト
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Quantization-Based Optimization: Alternative Stochastic Approximation of
Global Optimization [0.0]
NP-hard問題における目的関数のエネルギーレベルを定量化するための大域的最適化アルゴリズムを提案する。
数値実験により,提案アルゴリズムはNP-ハード最適化問題の解法において従来の学習法よりも優れていた。
論文 参考訳(メタデータ) (2022-11-08T03:01:45Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Accelerated and instance-optimal policy evaluation with linear function
approximation [17.995515643150657]
既存のアルゴリズムはこれらの下界の少なくとも1つと一致しない。
我々は,両下界を同時に一致させる高速時間差分アルゴリズムを開発し,インスタンス最適性という強い概念を実現する。
論文 参考訳(メタデータ) (2021-12-24T17:21:04Z) - AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods [7.486132958737807]
適応性に対する暗黙的アプローチによる適応分散低減手法を提案する。
有限サム最小化問題に対する収束保証を提供し,局所幾何が許せばサラよりも高速に収束できることを示す。
このアルゴリズムはステップサイズを暗黙的に計算し、関数の局所リプシッツ滑らかさを効率的に推定する。
論文 参考訳(メタデータ) (2021-02-19T01:17:15Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
我々は、割引決定過程における政策評価の問題に対処し、生成モデルの下で、ll_infty$errorに対するマルコフに依存した保証を提供する。
我々は、ポリシー評価のために、局所ミニマックス下限の両漸近バージョンと非漸近バージョンを確立し、アルゴリズムを比較するためのインスタンス依存ベースラインを提供する。
論文 参考訳(メタデータ) (2020-03-16T17:15:28Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。