A global quantum network with ground-based single-atom memories in optical cavities and satellite links
- URL: http://arxiv.org/abs/2507.02333v1
- Date: Thu, 03 Jul 2025 05:58:03 GMT
- Title: A global quantum network with ground-based single-atom memories in optical cavities and satellite links
- Authors: Jia-Wei Ji, Shinichi Sunami, Seigo Kikura, Akihisa Goban, Christoph Simon,
- Abstract summary: We propose a quantum repeater architecture for distributing entanglement over intercontinental distances.<n>The efficient entanglement swapping is achieved by performing high-fidelity Rydberg gates and readouts.<n>Our results show that this architecture enables entanglement distribution over intercontinental distances.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The realization of a global quantum network holds the potential to enable groundbreaking applications such as secure quantum communication and blind quantum computing. However, building such a network remains a formidable challenge, primarily due to photon loss in optical fibers. In this work, we propose a quantum repeater architecture for distributing entanglement over intercontinental distances by leveraging low-Earth-orbit satellites equipped with spontaneous parametric down-conversion (SPDC) photon-pair sources and ground stations utilizing single-atom memories in optical cavities and single-photon detectors to implement the cavity-assisted photon scattering (CAPS) gates for high-fidelity entanglement mapping. The efficient entanglement swapping is achieved by performing high-fidelity Rydberg gates and readouts. We evaluate the entanglement distribution rates and fidelities by analyzing several key imperfections, including time-dependent two-photon transmission and time-dependent pair fidelity, for various satellite heights and ground station distances. We also investigate the impact of pair source fidelity and spin decoherence rate on the repeater performance. Furthermore, we introduce a spatial-frequency multiplexing strategy within this architecture to enhance the design's performance. Finally, we discuss in detail the practical implementation of this architecture. Our results show that this architecture enables entanglement distribution over intercontinental distances. For example, it can distribute over 10000 pairs per flyby over 10000 km with a fidelity above 90%, surpassing the capabilities of terrestrial quantum repeaters
Related papers
- High-fidelity entanglement between a telecom photon and a room-temperature quantum memory [40.71478454459572]
Entanglement distribution through existing telecommunication infrastructure is crucial for realizing large-scale quantum networks.<n>We report an important milestone in quantum repeater architecture by demonstrating entanglement between a telecom-wavelength (1324 nm) photon and a room-temperature quantum memory with a fidelity up to 90.2%.
arXiv Detail & Related papers (2025-03-14T16:32:59Z) - Emulation of satellite up-link quantum communication with entangled photons [75.38606213726906]
We demonstrate an ultra-bright source of far-non-degenerate entangled photons and perform quantum key distribution in emulated high-loss satellite scenarios.<n>With a loss profile corresponding to that of one of the pioneering Micius up-link experiments, and a terrestrial end user separated by 10km of telecom fibre we achieve secure key accumulation of 5.2kbit in a single overpass in the limit.
arXiv Detail & Related papers (2025-02-05T19:14:55Z) - Satellite-assisted quantum communication with single photon sources and atomic memories [0.0]
Satellite-based quantum repeaters are a promising means to reach global distances in quantum networking.
We propose a satellite-based quantum repeater architecture with trapped individual atomic qubits.
arXiv Detail & Related papers (2024-11-14T15:49:51Z) - Metropolitan-scale heralded entanglement of solid-state qubits [0.0]
We report on heralded entanglement between two independently operated quantum network nodes separated by 10km.
We minimize the effects of fiber photon loss by quantum frequency conversion of the qubit-stabilized photons to the telecom L-band.
We demonstrate the delivery of a predefined entangled state on the nodes irrespective of the heralding detection pattern.
arXiv Detail & Related papers (2024-04-04T18:00:01Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - A CubeSat platform for space based quantum key distribution [62.997667081978825]
We report on the follow-up mission of SpooQy-1, a 3U CubeSat that successfully demonstrated the generation of polarization-entangled photons in orbit.
The next iteration of the mission will showcase satellite-to-ground quantum key distribution based on a compact source of polarization-entangled photon-pairs.
We briefly describe the design of the optical ground station that we are currently building in Singapore for receiving the quantum signal.
arXiv Detail & Related papers (2022-04-23T06:28:43Z) - Continuous entanglement distribution over a transnational 248 km fibre
link [58.720142291102135]
Entanglement is the basis of many quantum applications.
We present a continuously working international link between Austria and Slovakia.
We measure stable pair rates of 9 s$-1$ over an exemplary operation time of 110 hours.
arXiv Detail & Related papers (2022-03-23T13:55:27Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Improving entanglement generation rates in trapped ion quantum networks
using nondestructive photon measurement and storage [0.0]
We propose a hybrid networking architecture designed to improve entanglement rates in quantum networks based on trapped ions.
We show this proposed quantum network can generate remote entanglement rates up to a factor of 100 larger than that of an equivalent homogeneous network at both near-IR and C-band wavelengths for distances up to 50 km.
arXiv Detail & Related papers (2021-01-11T23:24:26Z) - Quantum repeaters in space [0.0]
Long-distance entanglement is a very precious resource, but its distribution is difficult due to the exponential losses of light in optical fibres.
We propose to combine quantum repeaters and satellite-based links, into a scheme that allows to achieve entanglement distribution over global distances.
The integration of satellite-based links with ground repeater networks can be envisaged to represent the backbone of the future Quantum Internet.
arXiv Detail & Related papers (2020-05-20T15:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.