論文の概要: Improving Consistency in Vehicle Trajectory Prediction Through Preference Optimization
- arxiv url: http://arxiv.org/abs/2507.02406v1
- Date: Thu, 03 Jul 2025 07:59:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:15.883826
- Title: Improving Consistency in Vehicle Trajectory Prediction Through Preference Optimization
- Title(参考訳): 優先最適化による車両軌道予測の整合性向上
- Authors: Caio Azevedo, Lina Achaji, Stefano Sabatini, Nicola Poerio, Grzegorz Bartyzel, Sascha Hornauer, Fabien Moutarde,
- Abstract要約: 軌道予測は、自動運転車のパイプラインにおいて不可欠なステップである。
現在のディープラーニングベースの軌道予測モデルは、公開データセット上で優れた精度を達成することができる。
選好最適化を用いたマルチエージェント設定における微調整軌道予測モデルを提案する。
- 参考スコア(独自算出の注目度): 4.506411269983418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction is an essential step in the pipeline of an autonomous vehicle. Inaccurate or inconsistent predictions regarding the movement of agents in its surroundings lead to poorly planned maneuvers and potentially dangerous situations for the end-user. Current state-of-the-art deep-learning-based trajectory prediction models can achieve excellent accuracy on public datasets. However, when used in more complex, interactive scenarios, they often fail to capture important interdependencies between agents, leading to inconsistent predictions among agents in the traffic scene. Inspired by the efficacy of incorporating human preference into large language models, this work fine-tunes trajectory prediction models in multi-agent settings using preference optimization. By taking as input automatically calculated preference rankings among predicted futures in the fine-tuning process, our experiments--using state-of-the-art models on three separate datasets--show that we are able to significantly improve scene consistency while minimally sacrificing trajectory prediction accuracy and without adding any excess computational requirements at inference time.
- Abstract(参考訳): 軌道予測は、自動運転車のパイプラインにおいて不可欠なステップである。
エージェントの周辺での移動に関する不正確なまたは矛盾した予測は、計画の不十分な操作とエンドユーザーにとって潜在的に危険な状況を引き起こす。
現在の最先端のディープラーニングベースの軌道予測モデルは、公開データセット上で優れた精度を達成することができる。
しかし、より複雑で対話的なシナリオで使用されると、エージェント間の重要な相互依存性を捕捉できないことが多く、トラフィックシーンにおけるエージェント間の一貫性のない予測につながる。
人間の嗜好を大規模言語モデルに組み込むことの有効性に着想を得て、選好最適化を用いたマルチエージェント設定における微調整軌道予測モデルを構築する。
微調整過程において予測される未来のうちの選好ランクを自動的に算出することにより、3つの異なるデータセットに対する最先端モデルを用いた実験を行い、軌道予測精度を最小限に抑えつつ、推定時に過剰な計算要求を加えることなく、シーンの一貫性を著しく向上できることを示した。
関連論文リスト
- ITPNet: Towards Instantaneous Trajectory Prediction for Autonomous Driving [46.17683799762322]
エージェントの軌道予測は自動運転車の安全性に不可欠である。
従来のアプローチは通常、エージェントの将来の軌道を予測するのに十分な長期の軌道に依存する。
ITPNetと呼ばれる汎用かつプラグアンドプレイの即時軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-12-10T10:09:41Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
本稿では,グラフのエッジに注目重みを割り当てることで,歩行者間の暗黙的相互作用に関する情報を集約する,GCNNに基づく新しいアプローチであるAttentional-GCNNを提案する。
提案手法は,10%平均変位誤差 (ADE) と12%最終変位誤差 (FDE) を高速な推論速度で向上することを示す。
論文 参考訳(メタデータ) (2020-11-23T03:13:26Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
本稿では、自動予測のための自動機械学習(Automatic Machine Learning for Conformal Prediction, AutoCP)というAutoMLフレームワークを提案する。
最高の予測モデルを選択しようとする慣れ親しんだAutoMLフレームワークとは異なり、AutoCPは、ユーザが指定したターゲットカバレッジ率を達成する予測間隔を構築する。
さまざまなデータセットでAutoCPをテストしたところ、ベンチマークアルゴリズムを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2020-06-24T23:13:11Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
本稿では,テンソルに基づく予測に焦点をあて,予測を改善するためのいくつかの実践的手法を提案する。
具体的には、長期予測のために「テンソル分解+2次元自己回帰移動平均(2D-ARMA)」モデルを提案する。
短期予測のために,テンソルクラスタリングに基づくテンソル補完を行い,過度に単純化され精度が保証されるのを避けることを提案する。
論文 参考訳(メタデータ) (2020-04-23T08:30:00Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。