論文の概要: Continual Gradient Low-Rank Projection Fine-Tuning for LLMs
- arxiv url: http://arxiv.org/abs/2507.02503v1
- Date: Thu, 03 Jul 2025 10:11:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:16.169841
- Title: Continual Gradient Low-Rank Projection Fine-Tuning for LLMs
- Title(参考訳): LLM用連続勾配低域射影微細調整
- Authors: Chenxu Wang, Yilin Lyu, Zicheng Sun, Liping Jing,
- Abstract要約: Low-Rank Adaptation (LoRA)は効率性を提供するが、モデルが新しいタスクを学習し、知識を伝達する能力を制限する。
本稿では,これらの制約を克服する新たな学習戦略であるGORP(Gradient Low Rank Projection)を提案する。
連続学習ベンチマークの実験では、GORPは既存の最先端のアプローチよりも優れた性能を示している。
- 参考スコア(独自算出の注目度): 20.978406031958965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual fine-tuning of Large Language Models (LLMs) is hampered by the trade-off between efficiency and expressiveness. Low-Rank Adaptation (LoRA) offers efficiency but constrains the model's ability to learn new tasks and transfer knowledge due to its low-rank nature and reliance on explicit parameter constraints. We propose GORP (Gradient LOw Rank Projection) for Continual Learning, a novel training strategy that overcomes these limitations by synergistically combining full and low-rank parameters and jointly updating within a unified low-rank gradient subspace. GORP expands the optimization space while preserving efficiency and mitigating catastrophic forgetting. Extensive experiments on continual learning benchmarks demonstrate GORP's superior performance compared to existing state-of-the-art approaches. Code is available at https://github.com/Wcxwcxw/GORP.
- Abstract(参考訳): 大規模言語モデル(LLM)の連続的な微調整は、効率性と表現性のトレードオフによって妨げられる。
Low-Rank Adaptation (LoRA)は効率性を提供するが、低ランクな性質と明示的なパラメータ制約に依存するため、新しいタスクを学習し、知識を伝達するモデルの能力を制約する。
連続学習のためのGORP(Gradient Low Rank Projection)を提案する。これは、完全および低ランクパラメータを相乗的に組み合わせ、統一された低ランク勾配部分空間内で共同で更新することにより、これらの制限を克服する新しいトレーニング戦略である。
GORPは効率を保ち、破滅的な忘れを緩和しながら最適化空間を拡大する。
連続学習ベンチマークに関する大規模な実験は、GORPが既存の最先端のアプローチよりも優れた性能を示している。
コードはhttps://github.com/Wcxwcxw/GORPで入手できる。
関連論文リスト
- TreeLoRA: Efficient Continual Learning via Layer-Wise LoRAs Guided by a Hierarchical Gradient-Similarity Tree [52.44403214958304]
本稿では階層的な勾配の類似性を利用して階層型アダプタを構築する新しい手法であるTreeLoRAを紹介する。
タスク類似度推定の計算負担を軽減するために,より低い信頼度境界に基づくアルゴリズムを開発するために,バンド手法を用いる。
視覚変換器 (ViTs) と大規模言語モデル (LLMs) の両方を用いた実験により, 提案手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2025-06-12T05:25:35Z) - Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning [19.27175827358111]
大規模言語モデル(LLM)における継続的な学習は破滅的な忘れがちである。
適応特異値分解(SVD)を利用した連続的完全微調整手法を提案する。
我々は,Encoder-decoder (T5-Large) モデルとdecoder-only (LLaMA-2 7B) モデルの両方を用いて,標準連続学習ベンチマークを広範囲に評価した。
論文 参考訳(メタデータ) (2025-04-09T17:59:42Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - Controlled Low-Rank Adaptation with Subspace Regularization for Continued Training on Large Language Models [13.56631686493347]
大規模言語モデル(LLM)は、自然言語処理において顕著な能力を示すが、新しいタスクを学ぶ際に破滅的な忘れに直面している。
本稿では,LoRA 構造上の部分空間正規化手法である Controlled LoRA (CLoRA) を提案する。
論文 参考訳(メタデータ) (2024-10-22T08:27:23Z) - Enhancing Zeroth-order Fine-tuning for Language Models with Low-rank Structures [21.18741772731095]
ゼロ階数(ZO)アルゴリズムは、関数値の有限差を用いて勾配を近似することで、有望な代替手段を提供する。
既存のZO法は、LLM微調整で一般的な低ランク勾配構造を捉えるのに苦労し、準最適性能をもたらす。
本稿では,LLMにおけるこの構造を効果的に捕捉する低ランクZOアルゴリズム(LOZO)を提案する。
論文 参考訳(メタデータ) (2024-10-10T08:10:53Z) - Tensor Train Low-rank Approximation (TT-LoRA): Democratizing AI with Accelerated LLMs [1.5503410315996757]
大規模言語モデル(LLM)は、幅広い自然言語処理(NLP)タスクで顕著な機能を示している。
しかし、LLMの複雑さはますます増大し、膨大な計算資源を必要としている。
本稿では,新しいパラメータ効率細調整(PEFT)手法であるTrain Low-Rank Approximation (TT-LoRA)を紹介する。
論文 参考訳(メタデータ) (2024-08-02T04:45:58Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
我々はPRILoRAを導入し、各層ごとに異なるランクを線形に割り当て、トレーニングプロセスを通してプルーニングを行う。
8つのGLUEベンチマークで広範な実験を行い,PRILoRAの有効性を検証する。
論文 参考訳(メタデータ) (2024-01-20T20:25:17Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
確率的発散の選択における変動が、より高性能なILOアルゴリズムをもたらす可能性について検討する。
本稿では,提案する$f$-divergence最小化フレームワークの課題を軽減するために,逆模倣学習のための再パラメータ化手法を提案する。
経験的に、我々の設計選択は、ベースラインアプローチより優れ、低次元連続制御タスクにおける専門家のパフォーマンスとより密に適合するIOOアルゴリズムを許容することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:04:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。